Estimation of Climate Change Impact on Mean Annual Runoff across Continental Australia Using Budyko and Fu Equations and Hydrological Models

J. Teng Water for a Healthy Country National Research Flagship, CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by J. Teng in
Current site
Google Scholar
PubMed
Close
,
F. H. S. Chiew Water for a Healthy Country National Research Flagship, CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by F. H. S. Chiew in
Current site
Google Scholar
PubMed
Close
,
J. Vaze Water for a Healthy Country National Research Flagship, CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Search for other papers by J. Vaze in
Current site
Google Scholar
PubMed
Close
,
S. Marvanek CSIRO Land and Water, Urrbrae, South Australia, Australia

Search for other papers by S. Marvanek in
Current site
Google Scholar
PubMed
Close
, and
D. G. C. Kirono CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia

Search for other papers by D. G. C. Kirono in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents the climate change impact on mean annual runoff across continental Australia estimated using the Budyko and Fu equations informed by projections from 15 global climate models and compares the estimates with those from extensive hydrological modeling. The results show runoff decline in southeast and far southwest Australia, but elsewhere across the continent there is no clear agreement between the global climate models in the direction of future precipitation and runoff change. Averaged across large regions, the estimates from the Budyko and Fu equations are reasonably similar to those from the hydrological models. The simplicity of the Budyko equation, the similarity in the results, and the large uncertainty in global climate model projections of future precipitation suggest that the Budyko equation is suitable for estimating climate change impact on mean annual runoff across large regions. The Budyko equation is particularly useful for data-limited regions, for studies where only estimates of climate change impact on long-term water availability are needed, and for investigative assessments prior to a detailed hydrological modeling study. The Budyko and Fu equations are, however, limited to estimating the change in mean annual runoff for a given change in mean annual precipitation and potential evaporation. The hydrological models, on the other hand, can also take into account potential changes in the subannual and other climate characteristics as well as provide a continuous simulation of daily and monthly runoff, which is important for many water availability studies.

Corresponding author address: Jin Teng, CSIRO Land and Water, GPO Box 1666, Canberra ACT 2601, Australia. E-mail: jin.teng@csiro.au

Abstract

This paper presents the climate change impact on mean annual runoff across continental Australia estimated using the Budyko and Fu equations informed by projections from 15 global climate models and compares the estimates with those from extensive hydrological modeling. The results show runoff decline in southeast and far southwest Australia, but elsewhere across the continent there is no clear agreement between the global climate models in the direction of future precipitation and runoff change. Averaged across large regions, the estimates from the Budyko and Fu equations are reasonably similar to those from the hydrological models. The simplicity of the Budyko equation, the similarity in the results, and the large uncertainty in global climate model projections of future precipitation suggest that the Budyko equation is suitable for estimating climate change impact on mean annual runoff across large regions. The Budyko equation is particularly useful for data-limited regions, for studies where only estimates of climate change impact on long-term water availability are needed, and for investigative assessments prior to a detailed hydrological modeling study. The Budyko and Fu equations are, however, limited to estimating the change in mean annual runoff for a given change in mean annual precipitation and potential evaporation. The hydrological models, on the other hand, can also take into account potential changes in the subannual and other climate characteristics as well as provide a continuous simulation of daily and monthly runoff, which is important for many water availability studies.

Corresponding author address: Jin Teng, CSIRO Land and Water, GPO Box 1666, Canberra ACT 2601, Australia. E-mail: jin.teng@csiro.au
Save
  • Arora, V. K., 2002: The use of the aridity index to assess climate change effect on annual runoff. J. Hydrol., 265, 164–177, doi:10.1016/s0022-1694(02)00101-4.

    • Search Google Scholar
    • Export Citation
  • Bates, B. C., Chandler R. E. , Charles S. P. , and Campbell E. P. , 2010: Assessment of apparent nonstationarity in time series of annual inflow, daily precipitation, and atmospheric circulation indices: A case study from southwest Western Australia. Water Resour. Res., 46, W00H02, doi:10.1029/2010wr009509.

    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1974: Climate and Life. Academic Press, 508 pp.

  • Cai, W., Cowan T. , and Raupach M. , 2009: Positive Indian Ocean Dipole events precondition southeast Australia bushfires. Geophys. Res. Lett., 36, L19710, doi:10.1029/2009gl039902.

    • Search Google Scholar
    • Export Citation
  • Chiew, F. H. S., 2006: Estimation of rainfall elasticity of streamflow in Australia. Hydrol. Sci. J., 51, 613–625, doi:10.1623/hysj.51.4.613.

    • Search Google Scholar
    • Export Citation
  • Chiew, F. H. S., 2010: Lumped conceptual rainfall-runoff models and simple water balance methods: Overview and applications in ungauged and data limited regions. Geogr. Compass, 4, 206–225, doi:10.1111/j.1749-8198.2009.00318.x.

    • Search Google Scholar
    • Export Citation
  • Chiew, F. H. S., Teng J. , Vaze J. , Post D. A. , Perraud J. M. , Kirono D. G. C. , and Viney N. R. , 2009: Estimating climate change impact on runoff across southeast Australia: Method, results, and implications of the modeling method. Water Resour. Res., 45, W10414, doi:10.1029/2008wr007338.

    • Search Google Scholar
    • Export Citation
  • Chiew, F. H. S., Kirono D. G. C. , Kent D. M. , Frost A. J. , Charles S. P. , Timbal B. , Nguyen K. C. , and Fu G. , 2010a: Comparison of runoff modelled using rainfall from different downscaling methods for historical and future climates. J. Hydrol., 387, 10–23, doi:10.1016/j.jhydrol.2010.03.025.

    • Search Google Scholar
    • Export Citation
  • Chiew, F. H. S., Young W. J. , Cai W. , and Teng J. , 2010b: Current drought and future hydroclimate projections in southeast Australia and implications for water resources management. Stoch. Env. Res. Risk Assess., 25, 601–612, doi:10.1007/s00477-010-0424-x.

    • Search Google Scholar
    • Export Citation
  • CSIRO and Australian Bureau of Meteorology, 2007: Climate change in Australia. Australian Commonwealth Scientific and Industrial Research Organisation and Australian Bureau of Meteorology Tech. Rep. 2007, 148 pp. [Available online at www.climatechangeinaustralia.gov.au/technical_report.php.]

  • Donohue, R. J., Roderick M. L. , and McVicar T. R. , 2011: Assessing the differences in sensitivities of runoff to changes in climatic conditions across a large basin. J. Hydrol., 406, 234–244, doi:10.1016/j.jhydrol.2011.07.003.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., Kilsby C. G. , and Stunell J. , 2007: Modelling the impacts of projected future climate change on water resources in north-west England. Hydrol. Earth Syst. Sci., 11, 1115–1126.

    • Search Google Scholar
    • Export Citation
  • Fu, B. P., 1981: On the calculation of the evaporation from land surface (in Chinese). Sci. Atmos. Sin., 5, 23–31.

  • Fu, G., Charles S. P. , and Chiew F. H. S. , 2007: A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow. Water Resour. Res., 43, W11419, doi:10.1029/2007WR005890.

    • Search Google Scholar
    • Export Citation
  • Gardner, L. R., 2009: Assessing the effect of climate change on mean annual runoff. J. Hydrol., 379, 351–359, doi:10.1016/j.jhydrol.2009.10.021.

    • Search Google Scholar
    • Export Citation
  • Jeffrey, S. J., Carter J. O. , Moodie K. B. , and Beswick A. R. , 2001: Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Modell. Software, 16, 309–330.

    • Search Google Scholar
    • Export Citation
  • Johanson, C. M., and Fu Q. , 2009: Hadley cell widening: Model simulations versus observations. J. Climate, 22, 2713–2725.

  • Jones, R. N., Chiew F. H. S. , Boughton W. C. , and Zhang L. , 2006: Estimating the sensitivity of mean annual runoff to climate change using selected hydrological models. Adv. Water Resour., 29, 1419–1429, doi:10.1016/j.advwatres.2005.11.001.

    • Search Google Scholar
    • Export Citation
  • Kay, A. L., Jones R. G. , and Reynard N. S. , 2006: RCM rainfall for UK flood frequency estimation. II. Climate change results. J. Hydrol., 318, 163–172, doi:10.1016/j.jhydrol.2005.06.013.

    • Search Google Scholar
    • Export Citation
  • Lu, J., Vecchi G. A. , and Reichler T. , 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, doi:10.1029/2006gl028443.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., 1994: Climate, soil water storage, and the average annual water balance. Water Resour. Res., 30, 2143–2156, doi:10.1029/94wr00586.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., 2003: Pattern scaling: An examination of the accuracy of the technique for describing future climates. Climatic Change, 60, 217–242.

    • Search Google Scholar
    • Export Citation
  • Morton, F. I., 1983: Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J. Hydrol., 66, 1–76.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282–290.

    • Search Google Scholar
    • Export Citation
  • Oudin, L., Andréassian V. , Lerat J. , and Michel C. , 2008: Has land cover a significant impact on mean annual streamflow? An international assessment using 1508 catchments. J. Hydrol., 357, 303–316, doi:10.1016/j.jhydrol.2008.05.021.

    • Search Google Scholar
    • Export Citation
  • Petheram, C., McMahon T. A. , Peel M. C. , and Smith C. J. , 2010: A continental scale assessment of Australia’s potential for irrigation. Water Resour. Manage., 24, 1791–1817, doi:10.1007/s11269-009-9525-z.

    • Search Google Scholar
    • Export Citation
  • Petheram, C., and Coauthors, 2012: Estimating the impact of projected climate change on runoff across the tropical savannas and semiarid rangelands of northern Australia. J. Hydrometeor., 13, 483–503.

    • Search Google Scholar
    • Export Citation
  • Post, D. A., and Coauthors, 2012: A robust methodology for conducting large-scale assessments of current and future water availability and use: A case study in Tasmania, Australia. J. Hydrol., 412–413, 233–245.

    • Search Google Scholar
    • Export Citation
  • Potter, N. J., and Zhang L. , 2009: Interannual variability of catchment water balance in Australia. J. Hydrol., 369, 120–129, doi:10.1016/j.jhydrol.2009.02.005.

    • Search Google Scholar
    • Export Citation
  • Potter, N. J., Chiew F. H. S. , and Frost A. J. , 2010: An assessment of the severity of recent reductions in rainfall and runoff in the Murray–Darling Basin. J. Hydrol., 381, 52–64, doi:10.1016/j.jhydrol.2009.11.025.

    • Search Google Scholar
    • Export Citation
  • Quintana Segui, P., Ribes A. , Martin E. , Habets F. , and Boé J. , 2010: Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of Mediterranean basins. J. Hydrol., 383, 111–124, doi:10.1016/j.jhydrol.2009.09.050.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., and Farquhar G. D. , 2011: A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res., 47, W00G07, doi:10.1029/2010WR009826.

    • Search Google Scholar
    • Export Citation
  • Sankarasubramanian, A., Vogel R. M. , and Limbrunner J. F. , 2001: Climate elasticity of streamflow in the United States. Water Resour. Res., 37, 1771–1781.

    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., 1990: From climate to flow. Climate Change and U.S. Water Resources, P. E. Waggoner, Eds., Wiley-Interscience, 177–206.

  • Shi, G., Ribbe J. , Cai W. , and Cowan T. , 2008: An interpretation of Australian rainfall projections. Geophys. Res. Lett., 35, L02702, doi:10.1029/2007gl032436.

    • Search Google Scholar
    • Export Citation
  • Silberstein, R. P., and Coauthors, 2012: Climate change and runoff in south-western Australia. J. Hydrol., in press.

  • Sivapalan, M., Blöschl G. , Zhang L. , and Vertessy R. , 2003: Downward approach to hydrological prediction. Hydrol. Processes, 17, 2101–2111, doi:10.1002/hyp.1425.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., Qin D. , Manning M. , Marquis M. , Averyt K. , Tignor M. M. B. , Miller H. L. Jr., and Chen Z. , Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Sun, F. B., Roderick M. L. , Lim W. H. , and Farquhar G. D. , 2011: Hydroclimatic projections for the Murray-Darling Basin based on an ensemble derived from Intergovernmental Panel on Climate Change AR4 climate models. Water Resour. Res., 47, W00G02, doi:10.1029/2010WR009829.

    • Search Google Scholar
    • Export Citation
  • Suppiah, R., Hennessy K. , Whetton P. H. , McInnes K. , Macadam I. , Bathols J. , Ricketts J. , and Page C. M. , 2007: Australian climate change projections derived from simulations performed for the IPCC 4th Assessment Report. Aust. Meteor. Mag., 56, 131–152.

    • Search Google Scholar
    • Export Citation
  • Teng, J., Vaze J. , Chiew F. H. S. , Wang B. , and Perraud J.-M. , 2012: Estimating the relative uncertainties sourced from GCMs and hydrological models in modeling climate change impact on runoff. J. Hydrometeor., 13, 122–139.

    • Search Google Scholar
    • Export Citation
  • Timbal, B., 2010: A discussion on aspects of the seasonality of the rainfall decline in south-eastern Australia. CAWCR Research Letters, No. 4, CSIRO and the Bureau of Meteorology, Melbourne, Australia, 20–26. [Available online at http://www.cawcr.gov.au/publications/researchletters/CAWCR_Research_Letters_4.pdf.]

  • van Roosmalen, L., Christensen J. H. , Butts M. B. , Jensen K. H. , and Refsgaard J. C. , 2010: An intercomparison of regional climate model data for hydrological impact studies in Denmark. J. Hydrol., 380, 406–419, doi:10.1016/j.jhydrol.2009.11.014.

    • Search Google Scholar
    • Export Citation
  • Vaze, J., and Teng J. , 2011: Future climate and runoff projections across New South Wales, Australia: Results and practical applications. Hydrol. Processes, 25, 18–35, doi:10.1002/hyp.7812.

    • Search Google Scholar
    • Export Citation
  • Vaze, J., Post D. A. , Chiew F. H. S. , Perraud J.-M. , Viney N. R. , and Teng J. , 2010: Climate non-stationarity—Validity of calibrated rainfall–runoff models for use in climate change studies. J. Hydrol., 394, 447–457, doi:10.1016/j.jhydrol.2010.09.018.

    • Search Google Scholar
    • Export Citation
  • Vaze, J., and Coauthors, 2011: Rainfall-runoff modelling across southeast Australia: Datasets, models and results. Aust. J. Water Resour., 14, 101–116.

    • Search Google Scholar
    • Export Citation
  • Whetton, P. H., McInnes K. L. , Jones R. J. , Hennessy K. J. , Suppiah R. , Page C. M. , and Durack P. J. , 2005: Australian climate change projections for impact assessment and policy application: A review. CSIRO Marine and Atmospheric Research Paper 001, 34 pp. [Available online at http://www.cmar.csiro.au/e-print/open/whettonph_2005a.pdf.]

  • Wigley, T. M. L., and Jones P. D. , 1985: Influences of precipitation changes and direct CO2 effects on streamflow. Nature, 314, 149–152.

    • Search Google Scholar
    • Export Citation
  • Xiong, L., and Guo S. , 2012: Appraisal of Budyko formula in calculating long-term water balance in humid watersheds of southern China. Hydrol. Processes, 26, 1370–1378, doi:10.1002/hyp.8273.

    • Search Google Scholar
    • Export Citation
  • Young, W. J., and Chiew F. H. S. , 2011: Climate change in the Murray–Darling Basin: Implications for water use and environmental consequences. Water Resources Planning and Management, R. Q. Grafton and K. Hussey, Eds., Cambridge University Press, 439–460.

  • Zhang, L., Dawes W. R. , and Walker G. R. , 2001: Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res., 37, 701–708, doi:10.1029/2000wr900325.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., Hickel K. , Dawes W. R. , Chiew F. H. S. , Western A. W. , and Briggs P. R. , 2004: A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res., 40, W02502, doi:10.1029/2003wr002710.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., Potter N. , Hickel K. , Zhang Y. Q. , and Shao Q. X. , 2008: Water balance modeling over variable time scales based on the Budyko framework—Model development and testing. J. Hydrol., 360, 117–131, doi:10.1016/j.jhydrol.2008.07.021.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1948 816 41
PDF Downloads 1029 163 12