Nested Mesoscale Large-Eddy Simulations with WRF: Performance in Real Test Cases

Charles Talbot Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Charles Talbot in
Current site
Google Scholar
PubMed
Close
,
Elie Bou-Zeid Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Elie Bou-Zeid in
Current site
Google Scholar
PubMed
Close
, and
Jim Smith Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Jim Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper assesses the performance of the Weather Research and Forecasting Model (WRF) as a tool for multiscale atmospheric simulations. Tests are performed in real and idealized cases with multiple configurations and with resolutions ranging from the mesoscale (gridcell size ~10 km) for the real cases to local scales (gridcell size ~50 m) for both real and idealized cases. All idealized simulations and the finest real-case simulations use the turbulence-resolving large-eddy simulation mode of WRF (WRF-LES). Tests in neutral conditions and with idealized forcing are first performed to assess the model’s sensitivity to grid resolutions and subgrid-scale parameterizations and to optimize the setup of the real cases. An increase in horizontal model resolution is found to be more beneficial than an increase in vertical resolution. WRF-LES is then tested, using extensive observational data, in real-world cases over complex terrain through nested simulations in which the mesoscale domains drive the LES domains. Analysis of the mesoscale simulations indicates that the data needed to force the largest simulated domain and to initialize surface parameters have the strongest influence on the results. Similarly, LES model fields are primarily influenced by their mesoscale meteorological forcing. As a result, the nesting of LES models down to a 50-m resolution does not improve all aspects of hydrometeorological predictions. Advantages of using fine-resolution LES are noted at nighttime (under stable conditions) and over heterogeneous surfaces when local properties are required or when resolving small-scale surface features is desirable.

Corresponding author address: Elie Bou-Zeid, Department of Civil and Environmental Engineering, Princeton University, E414, CEE, E-Quad, Princeton, NJ 08544. E-mail: ebouzeid@princeton.edu

Abstract

This paper assesses the performance of the Weather Research and Forecasting Model (WRF) as a tool for multiscale atmospheric simulations. Tests are performed in real and idealized cases with multiple configurations and with resolutions ranging from the mesoscale (gridcell size ~10 km) for the real cases to local scales (gridcell size ~50 m) for both real and idealized cases. All idealized simulations and the finest real-case simulations use the turbulence-resolving large-eddy simulation mode of WRF (WRF-LES). Tests in neutral conditions and with idealized forcing are first performed to assess the model’s sensitivity to grid resolutions and subgrid-scale parameterizations and to optimize the setup of the real cases. An increase in horizontal model resolution is found to be more beneficial than an increase in vertical resolution. WRF-LES is then tested, using extensive observational data, in real-world cases over complex terrain through nested simulations in which the mesoscale domains drive the LES domains. Analysis of the mesoscale simulations indicates that the data needed to force the largest simulated domain and to initialize surface parameters have the strongest influence on the results. Similarly, LES model fields are primarily influenced by their mesoscale meteorological forcing. As a result, the nesting of LES models down to a 50-m resolution does not improve all aspects of hydrometeorological predictions. Advantages of using fine-resolution LES are noted at nighttime (under stable conditions) and over heterogeneous surfaces when local properties are required or when resolving small-scale surface features is desirable.

Corresponding author address: Elie Bou-Zeid, Department of Civil and Environmental Engineering, Princeton University, E414, CEE, E-Quad, Princeton, NJ 08544. E-mail: ebouzeid@princeton.edu
Save
  • Aligo, E. A., Gallus W. A. , and Segal M. , 2009: On the impact of WRF model vertical grid resolution on Midwest summer rainfall forecasts. Wea. Forecasting, 24, 575594.

    • Search Google Scholar
    • Export Citation
  • Andren, A., Brown A. R. , Graf J. , Mason P. J. , Moeng C. H. , Nieuwstadt F. T. M. , and Schumann U. , 1994: Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes. Quart. J. Roy. Meteor. Soc., 120, 14571484.

    • Search Google Scholar
    • Export Citation
  • Borge, R., Alexandrov V. , del Vas J. J. , Lumbreras J. , and Rodriguez E. , 2008: A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula. Atmos. Environ., 42, 85608574.

    • Search Google Scholar
    • Export Citation
  • Bou-Zeid, E., Meneveau C. , and Parlange M. B. , 2004: Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: Blending height and effective surface roughness. Water Resour. Res., 40, W02505, doi:10.1029/2003WR002475.

    • Search Google Scholar
    • Export Citation
  • Bou-Zeid, E., Meneveau C. , and Parlange M. B. , 2005: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids, 17, 025105, doi:10.1063/1.1839152.

    • Search Google Scholar
    • Export Citation
  • Bou-Zeid, E., Parlange M. B. , and Meneveau C. , 2007: On the parameterization of surface roughness at regional scales. J. Atmos. Sci., 64, 216227.

    • Search Google Scholar
    • Export Citation
  • Bou-Zeid, E., Overney J. , Rogers B. D. , and Parlange M. B. , 2009: The effects of building representation and clustering in large-eddy simulations of flows in urban canopies. Bound.-Layer Meteor., 132, 415436.

    • Search Google Scholar
    • Export Citation
  • Brasseur, J. G., and Wei T. , 2010: Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling. Phys. Fluids, 22, 021303, doi:10.1063/1.3319073.

    • Search Google Scholar
    • Export Citation
  • Bryan, G., Skamarock W. , and Rotunno R. , 2008: A conceptual framework for the resolution dependence of updraft properties in cloud system resolving models. Eos, Trans. Amer. Geophys. Union, 89 (53), Abstract A43G-07.

    • Search Google Scholar
    • Export Citation
  • Catalano, F., and Moeng C. H. , 2010: Large-eddy simulation of the daytime boundary layer in an idealized valley using the Weather Research and Forecasting numerical model. Bound.-Layer Meteor., 137, 4975.

    • Search Google Scholar
    • Export Citation
  • Chan, P. W., 2009: Atmospheric turbulence in complex terrain: Verifying numerical model results with observations by remote-sensing instruments. Meteor. Atmos. Phys., 103, 145157.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K., Street R. L. , Xue M. , and Ferziger J. H. , 2005: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci., 62, 20582077.

    • Search Google Scholar
    • Export Citation
  • Courault, D., Drobinski P. , Brunet Y. , Lacarrere P. , and Talbot C. , 2007: Impact of surface heterogeneity on a buoyancy-driven convective boundary layer in light winds. Bound.-Layer Meteor., 124, 383403.

    • Search Google Scholar
    • Export Citation
  • Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.

  • Grell, G. A., and Devenyi D. , 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and Lackmann G. M. , 2009: Analysis of idealized tropical cyclone simulations using the Weather Research and Forecasting model: Sensitivity to turbulence parameterization and grid spacing. Mon. Wea. Rev., 137, 745765.

    • Search Google Scholar
    • Export Citation
  • Homer, C., Huang C. Q. , Yang L. M. , Wylie B. , and Coan M. , 2004: Development of a 2001 national land-cover database for the United States. Photogramm. Eng. Remote Sens., 70, 829840.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and Finnigan J. J. , 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.

  • Katul, G. G., Chu C. R. , Parlange M. B. , Albertson J. D. , and Ortenburger T. A. , 1995: Low-wavenumber spectral characteristics of velocity and temperature in the atmospheric surface layer. J. Geophys. Res., 100 (D7), 14 24314 255.

    • Search Google Scholar
    • Export Citation
  • Kirkil, G., Mirocha J. , Bou-Zeid E. , Chow F. K. , and Kosovic B. , 2012: Implementation and evaluation of dynamic subfilter-scale stress models for large-eddy simulation using WRF. Mon. Wea. Rev., 140, 266284.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: Dissipation of energy in the locally isotropic turbulence. C. R. (Dokl.) Acad. Sci. URSS, 32, 1618.

  • Kosovic, B., 1997: Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J. Fluid Mech., 336, 151182.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., Kondo H. , Kikegawa Y. , and Kimura F. , 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358.

    • Search Google Scholar
    • Export Citation
  • Lemone, M. A., and Coauthors, 2010: Simulating the IHOP_2002 Fair-Weather CBL with the WRF-ARW–Noah modeling system. Part II: Structures from a few kilometers to 100 km across. Mon. Wea. Rev., 138, 745764.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and Coauthors, 2011: Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications. J. Wind Eng. Ind. Aerodyn., 99, 308319.

    • Search Google Scholar
    • Export Citation
  • Lundquist, K. A., Chow F. K. , and Lundquist J. K. , 2010: An immersed boundary method for the Weather Research and Forecasting model. Mon. Wea. Rev., 138, 796817.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and Ek M. , 1984: The influence of atmospheric stability on potential evaporation. J. Climate Appl. Meteor., 23, 222234.

  • Mason, P. J., and Thomson D. J. , 1992: Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech., 242, 5178.

    • Search Google Scholar
    • Export Citation
  • Meneveau, C., and Katz J. , 2000: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech., 32, 132.

  • Mirocha, J. D., Lundquist J. K. , and Kosović B. , 2010: Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the Advanced Research WRF model. Mon. Wea. Rev., 138, 42124228.

    • Search Google Scholar
    • Export Citation
  • Misenis, C., and Zhang Y. , 2010: An examination of sensitivity of WRF/Chem predictions to physical parameterizations, horizontal grid spacing, and nesting options. Atmos. Res., 97, 315334.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., and Coauthors, 1996: Simulation of a stratocumulus-topped planetary boundary layer: Intercomparison among different numerical codes. Bull. Amer. Meteor. Soc., 77, 261278.

    • Search Google Scholar
    • Export Citation
  • Moeng, C. H., Dudhia J. , Klemp J. , and Sullivan P. , 2007: Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Mon. Wea. Rev., 135, 22952311.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and Obukhov A. M. , 1954: Basic laws of turbulent mixing in the ground layer of the atmosphere (in Russian). Tr. Geofiz. Inst., Akad. Nauk SSSR, 151, 163187.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., Cheon W. G. , Hong S. Y. , and Raasch S. , 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427.

    • Search Google Scholar
    • Export Citation
  • Ntelekos, A. A., Smith J. A. , Baeck M. L. , Krajewski W. F. , Miller A. J. , and Goska R. , 2008: Extreme hydrometeorological events and the urban environment: Dissecting the 7 July 2004 thunderstorm over the Baltimore MD Metropolitan Region. Water Resour. Res., 44, W08446, doi:10.1029/2007WR006346.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1988: Street design and urban canopy layer climate. Energy Build., 11, 103113.

  • Perry, A. E., Lim K. L. , and Henbest S. M. , 1987: An experimental study of the turbulence structure in smooth-wall and rough-wall boundary layers. J. Fluid Mech., 177, 437466.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

  • Porte-Agel, F., Meneveau C. , and Parlange M. B. , 2000: A scale-dependent dynamic model for large-eddy simulation: Application to a neutral atmospheric boundary layer. J. Fluid Mech., 415, 261284.

    • Search Google Scholar
    • Export Citation
  • Rabus, B., Eineder M. , Roth A. , and Bamler R. , 2003: The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens., 57, 241262.

    • Search Google Scholar
    • Export Citation
  • Rihani, J. F., Maxwell R. M. , and Chow F. K. , 2010: Coupling groundwater and land surface processes: Idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes. Water Resour. Res., 46, W12523, doi:10.1029/2010WR009111.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., Chen Y. , Wang W. , Davis C. , Dudhia J. , and Holland G. J. , 2009: Large-eddy simulation of an idealized tropical cyclone. Bull. Amer. Meteor. Soc., 90, 17831788.

    • Search Google Scholar
    • Export Citation
  • Sagaut, P., 2006: Large Eddy Simulation for Incompressible Flows: An Introduction. 3rd ed. Springer, 556 pp.

  • Scotti, A., Meneveau C. , and Fatica M. , 1997: Dynamic Smagorinsky model on anisotropic grids. Phys. Fluids, 9, 18561858.

  • Shin, H., and Hong S.-Y. , 2011: Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound.-Layer Meteor., 139, 261281.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN–475+STR, 113 pp.

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164.

    • Search Google Scholar
    • Export Citation
  • Stevens, D. E., and Bretherton C. S. , 1999: Effects of resolution on the simulation of stratocumulus entrainment. Quart. J. Roy. Meteor. Soc., 125, 425439.

    • Search Google Scholar
    • Export Citation
  • Stoll, R., and Porté-Agel F. , 2006: Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resour. Res., 42, W01409, doi:10.1029/2005WR003989.

    • Search Google Scholar
    • Export Citation
  • Stoll, R., and Porté-Agel F. , 2009: Surface heterogeneity effects on regional-scale fluxes in stable boundary layers: Surface temperature transitions. J. Atmos. Sci., 66, 412431.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 670 pp.

  • Talbot, C., Augustin P. , Leroy C. , Willart V. , Delbarre H. , and Khomenko G. , 2007a: Impact of a sea breeze on the boundary-layer dynamics and the atmospheric stratification in a coastal area of the North Sea. Bound.-Layer Meteor., 125, 133154.

    • Search Google Scholar
    • Export Citation
  • Talbot, C., Leroy C. , Augustin P. , Willart V. , Delbarre H. , Fourmentin M. , and Khomenko G. , 2007b: Transport and dispersion of atmospheric sulphur dioxide from an industrial coastal area during a sea-breeze event. Atmos. Chem. Phys. Discuss., 7, 15 98916 022.

    • Search Google Scholar
    • Export Citation
  • Vanella, M., Piomelli U. , and Balaras E. , 2008: Effect of grid discontinuities on large-eddy simulation statistics and flow fields. J. Turbul., 9, 123.

    • Search Google Scholar
    • Export Citation
  • Wang, Z.-H., Bou-Zeid E. , Au K. , and Smith J. A. , 2011a: Analyzing the sensitivity of WRF’s single-layer urban canopy model to parameter uncertainty using advanced Monte Carlo simulation. J. Appl. Meteor. Climatol., 50, 17951814.

    • Search Google Scholar
    • Export Citation
  • Wang, Z.-H., Bou-Zeid E. , and Smith J. A. , 2011b: A spatially analytical scheme for surface temperatures and conductive heat fluxes in urban canopy models. Bound.-Layer Meteor., 138, 171193.

    • Search Google Scholar
    • Export Citation
  • Wu, Y. L., Nair U. S. , Pielke R. A. , McNider R. T. , Christopher S. A. , and Anantharaj V. G. , 2009: Impact of land surface heterogeneity on mesoscale atmospheric dispersion. Bound.-Layer Meteor., 133, 367389.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826.

  • Zhang, Y., Smith J. A. , Ntelekos A. A. , Baeck M. L. , Krajewski W. F. , and Moshary F. , 2009: Structure and evolution of precipitation along a cold front in the northeastern United States. J. Hydrometeor., 10, 12431256.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., Albrecht B. A. , Ghate V. P. , and Zhu Z. D. , 2010: Multiple-scale simulations of stratocumulus clouds. J. Geophys. Res., 115, D23201, doi:10.1029/2010JD014400.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3388 1074 71
PDF Downloads 2861 534 34