The Hydrological Cycle in Three State-of-the-Art Reanalyses: Intercomparison and Performance Analysis

Christof Lorenz Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Department of Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany

Search for other papers by Christof Lorenz in
Current site
Google Scholar
PubMed
Close
and
Harald Kunstmann Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Department of Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, and Institute of Geography, Regional Climate and Hydrology, University of Augsburg, Germany

Search for other papers by Harald Kunstmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The three state-of-the-art global atmospheric reanalysis models—namely, ECMWF Interim Re-Analysis (ERA-Interim), Modern-Era Retrospective Analysis for Research and Applications (MERRA; NASA), and Climate Forecast System Reanalysis (CFSR; NCEP)—are analyzed and compared with independent observations in the period between 1989 and 2006. Comparison of precipitation and temperature estimates from the three models with gridded observations reveals large differences between the reanalyses and also of the observation datasets. A major source of uncertainty in the observations is the spatial distribution and change of the number of gauges over time. In South America, active measuring stations were reduced from 4267 to 390. The quality of precipitation estimates from the reanalyses strongly depends on the geographic location, as there are significant differences especially in tropical regions. The closure of the water cycle in the three reanalyses is analyzed by estimating long-term mean values for precipitation, evapotranspiration, surface runoff, and moisture flux divergence. Major shortcomings in the moisture budgets of the datasets are mainly due to inconsistencies of the net precipitation minus evaporation and evapotranspiration, respectively, (PE) estimates over the oceans and landmasses. This imbalance largely originates from the assimilation of radiance sounding data from the NOAA-15 satellite, which results in an unrealistic increase of oceanic PE in the MERRA and CFSR budgets. Overall, ERA-Interim shows both a comparatively reasonable closure of the terrestrial and atmospheric water balance and a reasonable agreement with the observation datasets. The limited performance of the three state-of-the-art reanalyses in reproducing the hydrological cycle, however, puts the use of these models for climate trend analyses and long-term water budget studies into question.

Corresponding author address: Christof Lorenz, Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany. E-mail: christof.lorenz@kit.edu

Abstract

The three state-of-the-art global atmospheric reanalysis models—namely, ECMWF Interim Re-Analysis (ERA-Interim), Modern-Era Retrospective Analysis for Research and Applications (MERRA; NASA), and Climate Forecast System Reanalysis (CFSR; NCEP)—are analyzed and compared with independent observations in the period between 1989 and 2006. Comparison of precipitation and temperature estimates from the three models with gridded observations reveals large differences between the reanalyses and also of the observation datasets. A major source of uncertainty in the observations is the spatial distribution and change of the number of gauges over time. In South America, active measuring stations were reduced from 4267 to 390. The quality of precipitation estimates from the reanalyses strongly depends on the geographic location, as there are significant differences especially in tropical regions. The closure of the water cycle in the three reanalyses is analyzed by estimating long-term mean values for precipitation, evapotranspiration, surface runoff, and moisture flux divergence. Major shortcomings in the moisture budgets of the datasets are mainly due to inconsistencies of the net precipitation minus evaporation and evapotranspiration, respectively, (PE) estimates over the oceans and landmasses. This imbalance largely originates from the assimilation of radiance sounding data from the NOAA-15 satellite, which results in an unrealistic increase of oceanic PE in the MERRA and CFSR budgets. Overall, ERA-Interim shows both a comparatively reasonable closure of the terrestrial and atmospheric water balance and a reasonable agreement with the observation datasets. The limited performance of the three state-of-the-art reanalyses in reproducing the hydrological cycle, however, puts the use of these models for climate trend analyses and long-term water budget studies into question.

Corresponding author address: Christof Lorenz, Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany. E-mail: christof.lorenz@kit.edu
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Andersson, A., Fennig K. , Klepp C. , Bakan S. , Graßl H. , and Schulz J. , 2010: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS-3. Earth Syst. Sci. Data Discuss., 3, 143194.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., Hagemann S. , and Hodges K. I. , 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, D11111, doi:10.1029/2004JD004536.

    • Search Google Scholar
    • Export Citation
  • Berrisford, P., Dee D. , Fielding K. , Fuentes M. , Kallberg P. , Kobayashi S. , and Uppala S. , 2009: The ERA Interim archive: Version 1.0. ERA Rep. Series, ECMWF, 16 pp. [Available online at http://ecmwf.int/publications/library/do/references/show?id=89203.]

  • Betts, A. K., Ball J. H. , and Viterbo P. , 1999: Basin-scale surface water and energy budgets for the Mississippi from the ECMWF reanalysis. J. Geophys. Res., 104 (D16), 19 29319 306, doi:10.1029/1999JD900056.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , and Viterbo P. , 2003: Evaluation of the ERA-40 surface water budget and surface temperature for the Mackenzie River basin. J. Hydrometeor., 4, 11941211.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Ball J. H. , Viterbo P. , Dai A. , and Marengo J. , 2005: Hydrometeorology of the Amazon in ERA-40. J. Hydrometeor., 6, 764774.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., Köhler M. , and Zhang Y. , 2009: Comparison of river basin hydrometeorology in ERA-Interim and ERA-40 reanalyses with observations. J. Geophys. Res., 114, D02101, doi:10.1029/2008JD010761.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., Chen J. , Robertson F. R. , and Adler R. F. , 2008: Evaluation of global precipitation in reanalyses. J. Appl. Meteor. Climatol., 47, 22792299.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., Robertson F. R. , and Chen J. , 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739.

  • Chen, M., Shi W. , Xie P. , Silva V. B. S. , Kousky V. E. , Higgins R. W. , and Janowiak J. E. , 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chido, G., and Haimberger L. , 2009: Interannual changes in mass consistent energy budgets from ERA-Interim and satellite data. J. Geophys. Res., 115, D02112, doi:10.1029/2009JD012049.

    • Search Google Scholar
    • Export Citation
  • Fuchs, T., Rapp J. , Rubel F. , and Rudolf B. , 2001: Correction of synoptic precipitation observations due to systematic measuring errors with special regard to precipitation phases. Phys. Chem. Earth, 26B, 689693, doi:10.1016/S1464-1909(01)00070-3.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., Arpe K. , and Bengtsson L. , 2005: Validation of the hydrological cycle of ERA-40. ERA Rep. Series, ECMWF, 42 pp. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/era40/ERA40_PRS24.pdf.]

  • Higgins, R. W., Kousky V. E. , Silva V. B. S. , Becker E. , and Xie P. , 2010: Intercomparison of daily precipitation statistics over the United States in observations and in NCEP reanalysis products. J. Climate, 23, 46374650.

    • Search Google Scholar
    • Export Citation
  • Jacobson, M. Z., 2007: Fundamentals of Atmospheric Modeling. 2nd ed. Cambridge University Press, 813 pp.

  • Janowiak, J. E., Gruber A. , Kondragunta C. R. , Livezey R. E. , and Huffman G. J. , 1997: A comparison of the NCEP–NCAR reanalysis precipitation and the GPCP rain gauge–satellite combined dataset with observational error considerations. J. Climate, 11, 29602979.

    • Search Google Scholar
    • Export Citation
  • Jones, P. W., 1999: First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Wea. Rev., 127, 22042210.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247268.

    • Search Google Scholar
    • Export Citation
  • Kleidon, A., and Schymanski S. , 2008: Thermodynamics and optimality of the water budget on land: A review. Geophys. Res. Lett., 35, L20404, doi:10.1029/2008GL035393.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and Willmott C. J. , 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111127, doi:10.1002/joc.3370100202.

    • Search Google Scholar
    • Export Citation
  • Matsuura, K., and Willmott C. J. , 2009: Terrestrial air temperature: 1900-2008 gridded monthly time series (version 2.01). Center for Climatic Research, University of Delaware, digital media. [Available online at http://climate.geog.udel.edu/~climate/html_pages/download.html#P2009.]

  • Mitchell, T. D., and Jones P. D. , 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693712, doi:10.1002/joc.1181.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., Hirschi M. , and Seneviratne S. I. , 2010: New diagnostic estimates of variations in terrestrial water storage based on ERA-Interim data. Hydrol. Processes, 25, 9961008, doi:10.1002/hyp.7652.

    • Search Google Scholar
    • Export Citation
  • Nicolas, J. P., and Bromwich D. H. , 2011: Precipitation changes in high southern latitudes from global reanalyses: A cautionary tale. Surv. Geophys., 32, 475494, doi:10.1007/s10712-011-9114-6.

    • Search Google Scholar
    • Export Citation
  • Oki, T., and Shinjiro K. , 2006: Global hydrological cycles and world water resources. Science, 313, 10681072, doi:10.1126/science.1128845.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and Oort A. H. , 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Poccard, I., Janicot S. , and Camberlin P. , 2000: Comparison of rainfall structures between NCEP/NCAR reanalyses and observed data over tropical Africa. Climate Dyn., 16, 897915, doi:10.1007/s003820000087.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1968: Atmospheric water vapor transport and the water balance of North America. II. Large-scale water balance investigations. Mon. Wea. Rev., 96, 720734.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Kostera R. D. , Lannoy G. J. M. D. , Forman B. A. , Liu Q. , Mahanama S. P. P. , and Tour A. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA:–NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Roads, J. O., Chen S. C. , Guetter A. K. , and Georgakaos K. P. , 1994: Large-scale aspects of the United States hydrologic cycle. Bull. Amer. Meteor. Soc., 75, 15891610.

    • Search Google Scholar
    • Export Citation
  • Roads, J. O., Kanamitsu M. , and Stewart R. E. , 2002: CSE water and energy budgets in the NCEP–DOE Reanalysis II. J. Hydrometeor., 3, 227248.

    • Search Google Scholar
    • Export Citation
  • Robertson, F. R., Bosilovich M. G. , Chen J. , and Miller T. L. , 2011: The effect of satellite observing system changes on MERRA water and energy fluxes. J. Climate, 24, 51975217.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., and Rubel F. , 2005: Global precipitation. Observed Global Climate, M. Hantel, Ed., Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, Vol. 6, Springer-Verlag, 11.01–11.53.

  • Rudolf, B., and Schneider U. , 2005: Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations. Proc. Second Workshop of the Int. Precipitation Working Group, Monterey, CA, IPWG, 231–247.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Schneider, U., Fuchs T. , Meyer-Christoffer A. , and Rudolf B. , 2008: Global precipitation analysis products of the GPCC. Deutscher Wetterdienst Tech. Rep., 12 pp. [Available online at www.tam.cec.org/Atlas/Files/Precipitation/GPCC_intro_products_2008.pdf.]

  • Seneviratne, S. I., Viterbo P. , Lüthi D. , and Schär C. , 2004: Inferring changes in terrestrial water storage using ERA-40 reanalysis data: The Mississippi River basin. J. Climate, 17, 20392057.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., Uppala S. , Dee D. , and Kobayashi S. , 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35. [Available online at http://www.ecmwf.int/publications/newsletters/pdf/110_rev.pdf.]

  • Sylla, M. B., Coppola E. , Mariotti L. , Giorgi F. , Ruti P. M. , Dell’Aquila A. , and Bi X. , 2010: Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-interim reanalysis. Climate Dyn., 35, 231247, doi:10.1007/s00382-009-0613-9.

    • Search Google Scholar
    • Export Citation
  • Szeto, K. K., Tran H. , MacKay M. D. , Crawford R. , and Stewart R. E. , 2008: The MAGS Water and Energy Budget Study. J. Hydrometeor., 9, 96115.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106 (D7), 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Smith L. , Qian T. , Dai A. , and Fasullo J. , 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Fasullo J. T. , and Mackaro J. , 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • Van der Ent, R. J., Savenije H. H. G. , Schaefli B. , and Steele-Dunne S. C. , 2010: Origin and fate of atmospheric moisture over continents. Water Resour. Res., 46, W09525, doi:10.1029/2010WR009127.

    • Search Google Scholar
    • Export Citation
  • Wang, W., Xie P. , Yoo S.-H. , Xue Y. , Kumar A. , and Wu X. , 2010: An assessment of the surface climate in the NCEP climate forecast system reanalysis. Climate Dyn., 37, 16011620, doi:10.1007/s00382-010-0935-7.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., Rowe C. M. , and Mintz Y. , 1985: Climatology of the terrestrial seasonal water cycle. J. Climatol., 5, 589606, doi:10.1002/joc.3370050602.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., Huang B. , Hu Z.-Z. , Kumar A. , Wen C. , Behringer D. , and Nadiga S. , 2010: An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Climate Dyn., 37, 25112539, doi:10.1007/s00382-010-0954-4.

    • Search Google Scholar
    • Export Citation
  • Yeh, P. J.-F., and Famiglietti J. S. , 2008: Regional terrestrial water storage change and evapotranspiration from terrestrial and atmospheric water balance computations. J. Geophys. Res., 113, D09108, doi:10.1029/2007JD009045.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5252 1253 214
PDF Downloads 1827 208 27