• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Alsdorf, D. E., , and Lettenmaier D. P. , 2003: Tracking fresh water from space. Science, 301, 14851488.

  • Alsdorf, D. E., and Coauthors, 2003: The need for global, satellite-based observations of terrestrial surface waters. Eos, Trans. Amer. Geophys. Union, 84, 275276.

    • Search Google Scholar
    • Export Citation
  • Alsdorf, D. E., , Rodriguez E. , , and Lettenmaier D. P. , 2007: Measuring surface water from space. Rev. Geophys., 45, 124.

  • Anderson, A., , Fennig K. , , Klepp C. , , Bakan S. , , Grassl H. , , Schulz J. , , Andersson A. , , and Grasl H. , 2010: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS-3. Earth Syst. Sci. Data Discuss., 3, 143194, doi: 10.5194/essdd-3-143-2010.

    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., , Clark E. A. , , Lettenmaier D. P. , , and Alsdorf D. E. , 2007: Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics model. Geophys. Res. Lett., 34, L10403, 10.1029/2007GL029721.

    • Search Google Scholar
    • Export Citation
  • Bates, P. D., , and DeRoo A. P. J. , 2000: A simple raster-based model for flood inundation simulation. J. Hydrol., 236, 5477.

  • Baumgartner, A., , and Reichel E. , 1975: The World Water Balance. Elsevier, 179 pp.

  • Bjerklie, D. M., , Dingman S. L. , , Vörösmarty C. J. , , Bolster C. H. , , and Congalton R. G. , 2003: Evaluating the potential for measuring river discharge from space. J. Hydrol., 278, 1738.

    • Search Google Scholar
    • Export Citation
  • Bjerklie, D. M., , Moller D. K. , , Smith L. C. , , and Dingman S. L. , 2004: Estimating discharge in rivers using remotely sensed hydraulic information. J. Hydrol., 309, 191209.

    • Search Google Scholar
    • Export Citation
  • Di Baldassarre, G., , and Montanari A. , 2009: Uncertainty in river discharge observations: A quantitative analysis. Hydrol. Earth Syst. Sci., 13, 913921, doi:10.5194/hess-13-913-2009.

    • Search Google Scholar
    • Export Citation
  • Dingman, S. L., 2007: Analytical derivation of at-a-station hydraulic geometry relations. J. Hydrol., 334, 1727.

  • Döll, P. E., , and Siebert S. , 2002: Global modeling of irrigation water requirements. Water Resour. Res., 38, 1037, doi:10.1029/2001WR000355.

    • Search Google Scholar
    • Export Citation
  • Döll, P. E., , Kaspar F. , , and Lehner B. , 2003: A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol., 270, 105134, doi:10.1016/S0022-1694(02)00283-4.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 14310 162.

    • Search Google Scholar
    • Export Citation
  • Falkenmark, M., 1998: Dilemma when entering the 21st century—Rapid change but lack of a sense of urgency. Water Policy, 1, 421436.

  • Falkenmark, M., , and Biswas A. K. , 1995: Further momentum to water issues: Comprehensive water problem assessment in the being. Ambio, 24, 380382.

    • Search Google Scholar
    • Export Citation
  • Fekete, B. M., , Vörösmarty C. J. , , and Grabs W. , 2002: High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles, 16, 1042, doi:10.1029/1999GB001254.

    • Search Google Scholar
    • Export Citation
  • Gleick, P. H., Ed., 1993: Water in Crisis: A Guide to the World’s Fresh Water Resources. Oxford University Press, 504 pp.

  • Grabs, W., , De Couet T. , , and Pauler J. , 1996: Freshwater fluxes from the continents into the world oceans: Based on data of the Global Runoff Data Base. Global Runoff Data Centre Rep. 10, 228 pp.

  • Graham, P. M., , Dickens C. W. S. , , and Taylor R. J. , 2004: MiniSASS—A novel technique for community participation in river health monitoring and management. Afr. J. Aquat. Sci., 20, 2535.

    • Search Google Scholar
    • Export Citation
  • Gutowski, W. J., Jr., , Chen Y. , , and Otles Z. , 1997: Atmospheric water vapor transport in NCEP–NCAR reanalyses: Comparison with river discharge in the central United States. Bull. Amer. Meteor. Soc., 78, 19571969.

    • Search Google Scholar
    • Export Citation
  • Haddeland, I., , Skaugen T. , , and Lettenmaier D. P. , 2006: Anthropogenic impacts on continental surface water fluxes. Geophys. Res. Lett., 33, L08406, doi:10.1029/2006GL026047.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., , and Dümenil L. , 1998: A parameterization of the lateral waterflow for the global scale. Climate Dyn., 14, 1731.

  • Hanasaki, N., , Kanae S. , , and Oki T. , 2006: A reservoir operation scheme for global river routing models. J. Hydrol., 327, 2241.

  • Hannah, D. M., , Demuth S. , , van Lanen H. A. J. , , Looser U. , , Prudhomme C. , , Rees G. , , Stahl K. , , and Tallaksen L. M. , 2010: Large-scale river flow archives: Importance, current status and future needs. Hydrol. Processes, 25, 11911200, doi:10.1002/hyp.7794.

    • Search Google Scholar
    • Export Citation
  • Hirsch, R. M., , and Costa J. E. , 2004: U.S. stream flow measurement and data dissemination improve. Eos, Trans. Amer. Geophys. Union, 85, 197, doi:10.1029/2004EO200002.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267.

    • Search Google Scholar
    • Export Citation
  • Lanfear, K. J., , and Hirsch R. M. , 1999: USGS study reveals a decline in long-record streamgages. Eos, Trans. Amer. Geophys. Union, 80, 605607.

    • Search Google Scholar
    • Export Citation
  • L’vovich, M. I., , White G. F. , , Belyaev A. V. , , Kindler J. , , Koronkevic N. I. , , Lee T. R. , , and Voropaev G. V. , 1990: Use and transformation of terrestrial water systems. The Earth as Transformed by Human Actions, B. L. Turner et al., Eds., Cambridge University Press, 235–252.

  • Maurer, E. P., , Wood A. W. , , Adam J. C. , , Lettenmaier D. P. , , and Nijssen B. , 2002: A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climatol., 15, 32373251.

    • Search Google Scholar
    • Export Citation
  • Neal, J., , Schumann G. , , Bates P. D. , , Buytaert W. , , Matgen P. , , and Pappenberger F. , 2009: A data assimilation approach to discharge estimation from space. Hydrol. Processes, 23, 36413649, doi:10.1002/hyp.7518.

    • Search Google Scholar
    • Export Citation
  • Nerem, R. S., , Leuliette E. , , and Cazenave A. , 2006: Present-day sea-level change: A review. C. R. Geosci., 338, 10771083, doi:10.1016/j.crte.2006.09.001.

    • Search Google Scholar
    • Export Citation
  • Novak, C. E., 1985: Preparation of water-resources data reports. U.S. Geological Survey Open File Rep. 85-480.

  • NRC, 2007: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. National Academies Press, 456 pp.

  • Postel, S. L., , Daily G. C. , , and Ehrlich P. R. , 1996: Human appropriation of renewable fresh water. Science, 271, 785788.

  • Rantz, S. E., and Coauthors, 1982: Measurement and computation of streamflow: Volume 1. Measurement of stage and discharge. U.S. Geological Survey Water-Supply Paper 2175, 284 pp. [Available online at http://pubs.usgs.gov/wsp/wsp2175/pdf/WSP2175_vol1a.pdf.]

  • Rodda, J. C., 1998: Hydrological networks need improving! Proc. Int. Conf. on World Water Resources at the Beginning of the 21st Century, Paris, France, UNESCO.

  • Rodell, M., , and Famiglietti J. S. , 1999: Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour. Res., 35, 27052723.

    • Search Google Scholar
    • Export Citation
  • Shiklomanov, A. I., , Lammers R. B. , , and Vörösmarty C. J. , 2002: Widespread decline in hydrological monitoring threatens pan-Arctic research. Eos, Trans. Amer. Geophys. Union, 83, 1617.

    • Search Google Scholar
    • Export Citation
  • Shiklomanov, I. A., 1998: World Water Resources: A New Appraisal and Assessment for the 21st Century. UNESCO, 40 pp.

  • Smith, L. C., 1997: Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrol. Processes, 11, 14271439.

    • Search Google Scholar
    • Export Citation
  • Stokstad, E., 1999: Scarcity of rain, stream gages threatens forecasts. Science, 285, 1199.

  • Syed, T. H., , Famiglietti J. S. , , and Chambers D. P. , 2009: GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J. Hydrometeor., 10, 2240.

    • Search Google Scholar
    • Export Citation
  • Syed, T. H., , Famiglietti J. S. , , Chambers D. P. , , Willis J. K. , , and Hilburn K. , 2010: Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge. Proc. Natl. Acad. Sci. USA, 107, 17 91617 921.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., , Federer C. A. , , and Schloss A. L. , 1998a: Potential evaporation functions compared on US watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modeling. J. Hydrol., 207, 147169.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., , Peterson B. J. , , Lammers R. B. , , Shiklomanov I. A. , , and Shiklomanov A. I. , cited 1998b: Welcome to R-ArcticNET: A regional, electronic, hydrographic data network for the Arctic region. [Available online at http://www.r-arcticnet.sr.unh.edu.]

  • Vörösmarty, C. J., , Fekete B. M. , , Meybeck M. , , and Lammers R. B. , 2000: Geomorphometric attributes of the global river system of rivers at 30-minute spatial resolution. J. Hydrol., 237, 1739.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., and Coauthors, 2002: Global water data: A newly endangered species. Eos, Trans. Amer. Geophys. Union, 82, 54.

  • Wentz, F. J., , Ricciardulli L. , , Hiburn K. , , Mears C. , , and Hilburn K. , 2007: How much more rain will global warming bring? Science, 317, 233235, doi:10.1126/science.1140746.

    • Search Google Scholar
    • Export Citation
  • Wisser, D., , Frolking S. E. , , Douglas E. M. , , Fekete B. M. , , Vörösmarty C. J. , , and Schumann A. H. , 2008: Global irrigation water demand: Variability and uncertainties arising from agricultural and climate data sets. Geophys. Res. Lett., 35, L24408, doi:10.1029/2008GL035296.

    • Search Google Scholar
    • Export Citation
  • Wisser, D., , Fekete B. M. , , Vörösmarty C. J. , , and Schumann A. H. , 2010a: Reconstructing 20th century global hydrography: A contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydrol. Earth Syst. Sci., 14, 124, doi:10.5194/hess-14-1-2010.

    • Search Google Scholar
    • Export Citation
  • Wisser, D., , Frolking S. E. , , Douglas E. M. , , Fekete B. M. , , Schumann A. H. , , and Vörösmarty C. J. , 2010b: The significance of local water resources captured in small reservoirs for crop production—A global-scale analysis. J. Hydrol., 384, 264275.

    • Search Google Scholar
    • Export Citation
  • WMO, 2010: Implementation plan for the Global Observing System for climate in support of the UNFCCC. World Meteorological Organization Tech. Rep. WMO/TD-1244, 24 pp.

  • Xie, P.-P., , and Arkin P. A. , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558.

    • Search Google Scholar
    • Export Citation
  • Yu, L., , and Weller R. A. , 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 517539.

    • Search Google Scholar
    • Export Citation
  • Zhulidov, A. V., , Khlobystov V. V. , , Robarts R. D. , , and Pavlov D. F. , 2000: Critical analysis of water quality monitoring in the Russian Federation and former Soviet Union. Can. J. Fish. Aquat. Sci., 57, 19321939, doi:10.1139/cjfas-57-9-1932.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 75 75 7
PDF Downloads 60 60 6

Rationale for Monitoring Discharge on the Ground

View More View Less
  • 1 CUNY Environmental CrossRoads Initiative, The City College of New York, New York, New York
  • | 2 Global Runoff Data Centre, Federal Institute of Hydrology (BfG), Koblenz, Germany
  • | 3 Environment Canada, Toronto, Ontario, Canada
  • | 4 United Nations Global Environment Monitoring System Water Programme, Saskatoon, Saskatchewan, Canada
© Get Permissions
Restricted access

Abstract

The hydrological cycle is receiving increasing attention both as an essential natural resource for humans and ecosystems and as a critical component controlling the earth’s climate system. Better understanding of the water cycle and its interaction with changing climate will require improved monitoring of the various water fluxes and storages in hydrological processes. River discharge is a unique component reflecting an integrated hydrological signal over larger regions. Existing in situ monitoring solutions to monitor discharge are often considered too expensive and the difficulties in data sharing are viewed as insurmountable obstacles, which has led to growing interest in finding an alternative. This paper argues that in situ monitoring is far less expensive than claimed and the obstacles are not necessarily as insurmountable as often stated and a conscious effort to revitalize in situ monitoring will be needed. This paper demonstrates that there is no substitute for in situ discharge monitoring, but there should be a synergy between in situ monitoring and remote sensing since they are truly complementary. This paper primarily focuses on river discharge, but the conclusions are relevant for a host of other earth observations (particularly water quality) that would greatly benefit from a reconsidered balance between in situ and remote sensing observations.

Corresponding author address: Balázs M. Fekete, The City College of New York, Marshak Science Bldg., Room 9125, 160 Convent Avenue, New York, NY 10031. E-mail: bfekete@ccny.cuny.edu

Abstract

The hydrological cycle is receiving increasing attention both as an essential natural resource for humans and ecosystems and as a critical component controlling the earth’s climate system. Better understanding of the water cycle and its interaction with changing climate will require improved monitoring of the various water fluxes and storages in hydrological processes. River discharge is a unique component reflecting an integrated hydrological signal over larger regions. Existing in situ monitoring solutions to monitor discharge are often considered too expensive and the difficulties in data sharing are viewed as insurmountable obstacles, which has led to growing interest in finding an alternative. This paper argues that in situ monitoring is far less expensive than claimed and the obstacles are not necessarily as insurmountable as often stated and a conscious effort to revitalize in situ monitoring will be needed. This paper demonstrates that there is no substitute for in situ discharge monitoring, but there should be a synergy between in situ monitoring and remote sensing since they are truly complementary. This paper primarily focuses on river discharge, but the conclusions are relevant for a host of other earth observations (particularly water quality) that would greatly benefit from a reconsidered balance between in situ and remote sensing observations.

Corresponding author address: Balázs M. Fekete, The City College of New York, Marshak Science Bldg., Room 9125, 160 Convent Avenue, New York, NY 10031. E-mail: bfekete@ccny.cuny.edu
Save