Toward Development of Improved QPE in Complex Terrain Using Cloud-to-Ground Lightning Data: A Case Study for the 2005 Monsoon in Southern Arizona

Carlos Manuel Minjarez-Sosa Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona, and Departamento de Física, Universidad de Sonora, Hermosillo, Mexico

Search for other papers by Carlos Manuel Minjarez-Sosa in
Current site
Google Scholar
PubMed
Close
,
Christopher L. Castro Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Christopher L. Castro in
Current site
Google Scholar
PubMed
Close
,
Kenneth L. Cummins Department of Atmospheric Sciences, The University of Arizona, and Vaisala, Inc., Tucson, Arizona

Search for other papers by Kenneth L. Cummins in
Current site
Google Scholar
PubMed
Close
,
E. Philip Krider Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by E. Philip Krider in
Current site
Google Scholar
PubMed
Close
, and
Julio Waissmann Departamento de Matemáticas, Universidad de Sonora, Hermosillo, Mexico

Search for other papers by Julio Waissmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The relationship between convective precipitation and cloud-to-ground (CG) lightning is examined over a study area in southwest Arizona and northwest Mexico. Using seasonal-to-daily and hourly time resolution, the National Climatic Data Center (NCDC) stage IV precipitation product and the U.S. National Lightning Detection Network lightning data have been analyzed with the aim of developing an improved understanding of the relationship between these variables. A Gaussian method of spatially smoothing discrete lightning counts is used to estimate convective rainfall and improve the quality and spatial coverage of radar-derived precipitation in areas of complex terrain. For testing the dependence of the relationship between CG lightning and precipitation, a precipitation “sensor coverage” analysis has been performed. If locations that have poor sensor coverage are excluded, R2 between lightning and precipitation improves by up to 15%. A complementary way to estimate convective precipitation is proposed based on 1-h lightning occurrence intervals, which is the maximum time resolution in this study. We find that ~67% of the seasonal 2005 precipitation over the analysis domain is associated with CG lightning. Daily precipitation estimates are improved by specifying a “diurnal day” based on the diurnal maxima and minima in precipitation and CG lightning within the domain. Our method for improving quantitative precipitation estimation (QPE) using lightning is able to track and estimate convective precipitation over regions that have poor sensor coverage, particularly in both air mass storms and large multicellular events, with R2 up to 70%.

Corresponding author address: Carlos Manuel Minjarez-Sosa, Department of Atmospheric Sciences, The University of Arizona, Physics and Atmospheric Sciences Bldg., Rm. 520, 1118 East Fourth Street, Tucson, AZ 85721-0081. E-mail: minjarez@atmo.arizona.edu

Abstract

The relationship between convective precipitation and cloud-to-ground (CG) lightning is examined over a study area in southwest Arizona and northwest Mexico. Using seasonal-to-daily and hourly time resolution, the National Climatic Data Center (NCDC) stage IV precipitation product and the U.S. National Lightning Detection Network lightning data have been analyzed with the aim of developing an improved understanding of the relationship between these variables. A Gaussian method of spatially smoothing discrete lightning counts is used to estimate convective rainfall and improve the quality and spatial coverage of radar-derived precipitation in areas of complex terrain. For testing the dependence of the relationship between CG lightning and precipitation, a precipitation “sensor coverage” analysis has been performed. If locations that have poor sensor coverage are excluded, R2 between lightning and precipitation improves by up to 15%. A complementary way to estimate convective precipitation is proposed based on 1-h lightning occurrence intervals, which is the maximum time resolution in this study. We find that ~67% of the seasonal 2005 precipitation over the analysis domain is associated with CG lightning. Daily precipitation estimates are improved by specifying a “diurnal day” based on the diurnal maxima and minima in precipitation and CG lightning within the domain. Our method for improving quantitative precipitation estimation (QPE) using lightning is able to track and estimate convective precipitation over regions that have poor sensor coverage, particularly in both air mass storms and large multicellular events, with R2 up to 70%.

Corresponding author address: Carlos Manuel Minjarez-Sosa, Department of Atmospheric Sciences, The University of Arizona, Physics and Atmospheric Sciences Bldg., Rm. 520, 1118 East Fourth Street, Tucson, AZ 85721-0081. E-mail: minjarez@atmo.arizona.edu
Save
  • Adams, D. K., and Comrie A. C. , 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213.

  • Adams, D. K., and Souza E. P. , 2009: CAPE and convective events over the Southwest during the North American monsoon. Mon. Wea. Rev., 137, 8398.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E., 2004: Overview of overland satellite rainfall estimation for hydro-meteorological applications. Surv. Geophys., 25, 511537.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., Christian H. J. , and Latham J. , 1995: A computational study of the relationships linking lightning frequency and other thundercloud parameters. Quart. J. Roy. Meteor. Soc., 121, 15251548.

    • Search Google Scholar
    • Export Citation
  • Balling, R. C., Jr., and Brazel S. W. , 1987: Diurnal variations in Arizona monsoon precipitation frequencies. Mon. Wea. Rev., 115, 342346.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1965: Some factors governing precipitation and lightning from convective clouds. J. Atmos. Sci., 22, 7985.

  • Becker, J., and Berbery E. H. , 2008: The diurnal cycle of precipitation over the North American monsoon region during the NAME 2004 field campaign. J. Climate, 21, 771787.

    • Search Google Scholar
    • Export Citation
  • Biagi, C. J., Cummins K. L. , Kehoe K. E. , and Krider E. P. , 2007: National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003–2004. J. Geophys. Res., 112, D05208, doi:10.1029/2006JD007341.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., Pielke R. A. Sr., and Adegoke J. O. , 2007: Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part I: Model climatology (1950–2002). J. Climate, 20, 38443865.

    • Search Google Scholar
    • Export Citation
  • Cheze, J. L., and Sauvageot H. , 1997: Area-average rainfall and lightning activity. J. Geophys. Res., 102 (D2), 17071705.

  • Crosson, W. L., Duchon C. E. , Raghavan R. , and Goodman S. J. , 1996: Assessment of rainfall estimates using a standard ZR relationship and the probability matching method applied to composite radar data in central Florida. J. Appl. Meteor., 35, 12031219.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., and Murphy M. J. , 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51, 499518.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., Murphy M. J. , Bardo E. A. , Hiscox W. L. , Pyle R. B. , and Pifer A. E. , 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103 (D8), 90359044.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., Maddox R. A. , Howard K. , and Reyes S. , 1993: The Mexican monsoon. J. Climate, 6, 16651677.

  • Fher, T., Dotzek N. , and Holler H. , 2005: Comparison of lightning activity and radar-retrieved microphysical properties in EULINOX storms. Atmos. Res., 76, 167189.

    • Search Google Scholar
    • Export Citation
  • Foote, G. B., 1996: A Z–R relation for mountain thunderstorms. J. Appl. Meteor., 5, 229231.

  • Fulton, R. A., 1999: Sensitivity of WSR-88D rainfall estimates to the rain-rate threshold and rain gauge adjustment: A flash flood case study. Wea. Forecasting, 14, 604624.

    • Search Google Scholar
    • Export Citation
  • Fulton, R. A., Breidenbach J. P. , Seo D. J. , and Miller D. A. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395.

  • Grecu, M., and Krajewski W. F. , 2000: A large-sample investigation of statistical procedures for radar-based short-term quantitative precipitation forecasting. J. Hydrol., 239, 6984.

    • Search Google Scholar
    • Export Citation
  • Gungle, B., and Krider E. P. , 2006: Cloud-to-ground lightning and surface rainfall in warm-season Florida thunderstorms. J. Geophys. Res., 111, D19203, doi:10.1029/2005JD006802.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., Smull B. F. , and Dodge P. , 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613654.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., Ciesielski P. E. , L’Ecuyer T. S. , and Newman A. J. , 2010: Diurnal cycle of convection during the 2004 North American Monsoon Experiment. J. Climate, 23, 10601078.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Smith J. A. , 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25, 13871394.

  • Kursinski, A., and Zeng X. , 2006: Areal estimation of intensity and frequency of summertime precipitation over a midlatitude region. Geophys. Res. Lett., 33, L22401, doi:10.1029/2006GL027393.

    • Search Google Scholar
    • Export Citation
  • Latham, J., Blyth A. M. , Christian H. J. Jr., Deierling W. , and Gadian A. M. , 2004: Determination of precipitation rates and yields from lightning measurements. J. Hydrol., 288, 1319.

    • Search Google Scholar
    • Export Citation
  • Latham, J., Petersen W. A. , Dejerling W. , and Christian H. J. , 2007: Field identification of a unique globally dominant mechanism of thunderstorm electrification. Quart. J. Roy. Meteor. Soc., 133, 14531457, doi:10.1002/qj.133.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., and Krehbiel P. R. , 1979: Doppler radar and radio observations of thunderstorms. IEEE Trans. Geosci. Electron., 17, 162171.

    • Search Google Scholar
    • Export Citation
  • Li, J., Sorooshian S. , Higgins W. , Gao X. , Imam B. , and Hsu K. , 2008: Influence of spatial resolution on diurnal variability during the North American monsoon. J. Climate, 21, 39673988.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Mitchell K. E. , 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.]

  • MacGorman, D. R., Burgess D. W. , Mazur V. , Rust W. D. , Taylor W. L. , and Johnson B. C. , 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221250.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971013.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., McCollum D. M. , and Howard K. W. , 1995: Large-scale patterns associated with severe summertime thunderstorms over central Arizona. Wea. Forecasting, 10, 763778.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., Zhang J. , Gourley J. , and Howard K. , 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17, 927934.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., MacGorman D. R. , Ziegler C. L. , and Straka J. M. , 2005: Charge structure in a simulated multicell thunderstorm. J. Geophys. Res., 110, D12101, doi:10.1029/2004JD005287.

    • Search Google Scholar
    • Export Citation
  • Morin, E., Maddox R. , Goodrich D. , and Sorooshian S. , 2005: Radar ZR relationship for summer monsoon storms in Arizona. Wea. Forecasting, 20, 672679.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Rutledge S. A. , 1998: On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res., 103 (D12), 14 02514 040.

    • Search Google Scholar
    • Export Citation
  • Piepgrass, M. V., Krider E. P. , and Moore C. B. , 1982: Lightning and durface rainfall during Florida thunderstorms. J. Geophys. Res., 87, 1119311201.

    • Search Google Scholar
    • Export Citation
  • Reap, R. M., and MacGorman D. R. , 1989: Cloud-to-ground lightning: Climatological characteristics and relationships to model fields, radar observations, and severe local storms. Mon. Wea. Rev., 117, 518525.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and MacGorman D. R. , 1988: Cloud-to-ground lightning activity in the 10–11 June 1985 mesoscale convective system observed during the Oklahoma–Kansas PRE-STORM project. Mon. Wea. Rev., 116, 13931408.

    • Search Google Scholar
    • Export Citation
  • Saylor, J. R., Ulbrich C. W. , Ballentine J. W. , and Lapp J. L. , 2005: The correlation between lightning and DSD parameters. IEEE Trans. Geosci. Remote Sens., 43, 18061815.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., and Krajewski W. F. , 1993: A modeling of rainfall rate-reflectivity relationships. Water Resour. Res., 29, 25052514.

  • Smith, W. P., and Gall R. L. , 1989: Tropical squall lines of the Arizona monsoon. Mon. Wea. Rev., 117, 15531569.

  • Sorooshian, S., Lawford R. , Try P. , Rossow W. , Roads J. , Polcher J. , Sommeria G. , and Schiffer R. , 2005: Water energy cycles: Investigating the links. WMO Bull., 54, 5860.

    • Search Google Scholar
    • Export Citation
  • Soula, S., and Chauzy S. , 2001: Some aspects of the correlation between lightning and rain activities in thunderstorms. J. Atmos. Res., 56, 355373.

    • Search Google Scholar
    • Export Citation
  • Stall, C., Cummins K. , Krider E. P. , and Cramer J. , 2009: Detecting multiple ground contacts in cloud-to-ground lightning flashes. J. Atmos. Oceanic Technol., 26, 23922402.

    • Search Google Scholar
    • Export Citation
  • Stellman, K. M., Fuelberg H. E. , Garza R. , and Mullusky M. , 2001: An examination of radar and rain gauge-derived mean areal precipitation over Georgia watersheds. Wea. Forecasting, 16, 133144.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., 1990: Near absence of lightning in torrential rainfall producing Micronesian thunderstorms. Geophys. Res. Lett., 17, 23812384.

    • Search Google Scholar
    • Export Citation
  • Tapia, A., Smith J. A. , and Dixon M. , 1998: Estimation of convective rainfall from lightning observations. J. Appl. Meteor., 37, 14971509.

    • Search Google Scholar
    • Export Citation
  • Todd, M. C., Kidd C. , Kniveton D. , and Bellerby T. J. , 2001: A combined satellite infrared and passive microwave technique for estimation of small-scale rainfall. J. Atmos. Oceanic Technol., 18, 742755.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., Rutledge S. A. , and Tessendorf S. A. , 2005: The 20 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and Arkin P. A. , 1995: An intercomparison of gauge observations and satellite estimates of monthly precipitation. J. Appl. Meteor., 34, 11431160.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J., Hu J. , and Radzan A. , 2009: Evolution of the vertical thermodynamic profile during the transition from shallow to deep convection during CuPIDO 2006. Mon. Wea. Rev., 137, 937953.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 970 775 37
PDF Downloads 148 30 5