• Clapp, R. B., , and Hornberger G. M. , 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14, 601604.

  • Cosby, B. J., , Hornberger G. M. , , Clapp R. B. , , and Ginn T. R. , 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20, 682690.

    • Search Google Scholar
    • Export Citation
  • Cox, P., , Betts R. , , Bunton C. , , Essery R. , , Rowntree P. , , and Smith J. , 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15, 183203.

    • Search Google Scholar
    • Export Citation
  • Dharssi, I., , Vidale P. , , Verhoef A. , , Macpherson B. , , Jones C. , , and Best M. , 2009: New soil physical properties implemented in the Unified Model at PS18. Met Office Tech. Note 528, 33 pp.

  • Essery, R., , Best M. , , and Cox P. , 2001: MOSES 2.2 technical documentation. Hadley Centre Tech. Note 30, 30 pp.

  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2955.

    • Search Google Scholar
    • Export Citation
  • Global Soil Data Task, 2000: Global soil data products CD-ROM (IGBP-DIS). [Available online at http://daac.ornl.gov/SOILS/igbp.html.]

  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625.

    • Search Google Scholar
    • Export Citation
  • Hewitt, H. T., , Copsey D. , , Culverwell I. D. , , Harris C. M. , , Hill R. S. R. , , Keen A. B. , , McLaren A. J. , , and Hunke E. C. , 2011: Design and implementation of the infrastructure of HadGEM3: The next-generation Met Office climate modelling system. Geosci. Model Dev., 4, 223253, doi:10.5194/gmd-4-223-2011.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., , Brockhaus P. , , Bretherton C. S. , , and Schaer C. , 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020.

    • Search Google Scholar
    • Export Citation
  • Johansen, O., 1975: Thermal conductivity of soils. Ph.D. dissertation, University of Trondheim, 236 pp.

  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140.

  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , Guo Z. , , Yang R. , , Dirmeyer P. A. , , Mitchell K. , , and Puma M. J. , 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 43224335.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D., , and Slingo J. , 2005: Weak land–atmosphere coupling strength in HadAM3: The role of soil moisture variability. J. Hydrometeor., 6, 670680.

    • Search Google Scholar
    • Export Citation
  • Mercado, L., , Huntingford C. , , Gash J. , , Cox P. M. , , and Jogireddy V. , 2007: Improving the representation of radiation interception and photosynthesis for climate model applications. Tellus, 59B, 553569, doi:10.1111/j.1600-0889.2007.00256.x.

    • Search Google Scholar
    • Export Citation
  • Moufouma-Okia, W., , and Rowell D. P. , 2010: Impact of soil moisture initialisation and lateral boundary conditions on regional climate model simulations of the West African Monsoon. Climate Dyn., 35, 213229, doi:10.1007/s00382-009-0638-0.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., , Corti T. , , Davin E. L. , , Hirschi M. , , Jaeger E. B. , , Lehner I. , , Orlowsky B. , , and Teuling A. J. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99 (3–4), 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Senior, C., and Coauthors, 2011: Synergies between numerical weather prediction and general circulation climate models. The Development of Atmospheric General Circulation Models: Complexity, Synthesis and Computation, L. Donner, W. Schubert, and R. Somerville, Eds., Cambridge University Press, 86–89.

  • Walters, D. N., and Coauthors, 2011: The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geosci. Model Dev. Discuss., 4, 12131271, doi:10.5194/gmdd-4-1213-2011.

    • Search Google Scholar
    • Export Citation
  • Wang, G., , Kim Y. , , and Wang D. , 2007: Quantifying the strength of soil moisture–precipitation coupling and its sensitivity to changes in surface water budget. J. Hydrometeor., 8, 551570.

    • Search Google Scholar
    • Export Citation
  • Wei, J., , and Dirmeyer P. A. , 2010: Toward understanding the large-scale land-atmosphere coupling in the models: Roles of different processes. Geophys. Res. Lett., 37, L19707, doi:10.1029/2010GL044769.

    • Search Google Scholar
    • Export Citation
  • Wilson, M. F., , and Henderson-Sellers A. , 1985: A global archive of land cover and soils data for use in general circulation climate models. J. Climatol., 5, 119143.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., , Barlage M. , , Castro C. , , and Fling K. , 2010: Comparison of land–precipitation coupling strength using observations and models. J. Hydrometeor., 11, 979994.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., , Dirmeyer P. A. , , Wei J. , , Guo Z. , , and Lu C.-H. , 2011: Land–atmosphere coupling strength in the global forecast system. J. Hydrometeor., 12, 147156.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 1
PDF Downloads 10 10 1

Revisiting GLACE: Understanding the Role of the Land Surface in Land–Atmosphere Coupling

View More View Less
  • 1 Met Office Hadley Centre, Exeter, United Kingdom
© Get Permissions
Restricted access

Abstract

The Global Land–Atmosphere Coupling Experiment (GLACE) established a method for quantifying and comparing the influence of soil moisture on the atmosphere in AGCMs. The models included in the GLACE intercomparison displayed a wide range in the strength of this influence, with the Met Office Hadley Centre (MOHC) Atmosphere Model, version 3 (HadAM3), being one of the weakest. Applying the GLACE method to a much developed version of the MOHC model, the atmospheric component of the Hadley Centre Global Environmental Model version 3 (HadGEM3-A), it is demonstrated that this new model has a stronger coupling signal than its predecessor. Although this increase in the coupling strength cannot be attributed to changes in the land surface representation, the existence of the stronger signal enables an investigation of the signal’s dependence on key land surface parameters. The GLACE method is applied to four HadGEM3-A experiment cases, with soil hydraulic parameters specified using two methods of calculation from two different underlying soil texture datasets. These cases show differences in their volumetric soil moisture and their level of moisture availability for transpiration. A change in moisture availability produces a change in evaporation variability in the same direction, which is a key factor affecting the overall land–atmosphere coupling strength. For HadGEM3-A the parameter changes therefore produce a clear change in the GLACE diagnostic.

Corresponding author address: Ruth Comer, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 2SZ, United Kingdom. E-mail: ruth.comer@metoffice.gov.uk

This article is included in the Exchanges of Energy and Water at the Land-Atmosphere Interface special collection.

Abstract

The Global Land–Atmosphere Coupling Experiment (GLACE) established a method for quantifying and comparing the influence of soil moisture on the atmosphere in AGCMs. The models included in the GLACE intercomparison displayed a wide range in the strength of this influence, with the Met Office Hadley Centre (MOHC) Atmosphere Model, version 3 (HadAM3), being one of the weakest. Applying the GLACE method to a much developed version of the MOHC model, the atmospheric component of the Hadley Centre Global Environmental Model version 3 (HadGEM3-A), it is demonstrated that this new model has a stronger coupling signal than its predecessor. Although this increase in the coupling strength cannot be attributed to changes in the land surface representation, the existence of the stronger signal enables an investigation of the signal’s dependence on key land surface parameters. The GLACE method is applied to four HadGEM3-A experiment cases, with soil hydraulic parameters specified using two methods of calculation from two different underlying soil texture datasets. These cases show differences in their volumetric soil moisture and their level of moisture availability for transpiration. A change in moisture availability produces a change in evaporation variability in the same direction, which is a key factor affecting the overall land–atmosphere coupling strength. For HadGEM3-A the parameter changes therefore produce a clear change in the GLACE diagnostic.

Corresponding author address: Ruth Comer, Met Office Hadley Centre, FitzRoy Road, Exeter EX1 2SZ, United Kingdom. E-mail: ruth.comer@metoffice.gov.uk

This article is included in the Exchanges of Energy and Water at the Land-Atmosphere Interface special collection.

Save