• Anagnostou, E. N., , Krajewski W. F. , , Seo D. J. , , and Johnson E. R. , 1998: Mean-field rainfall bias for WSR-88D. J. Hydrol. Eng., 3, 149159.

    • Search Google Scholar
    • Export Citation
  • Bae, D. H., , Phuong T. A. , , and Yoon S. S. , 2009: A method to evaluate the radar rainfall accuracy for hydrological application. J. Korean Water Resour. Assoc., 42, 10391052.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Calheiros, R. V., , and Zawadzki I. , 1987: Reflectivity–rain rate relationships for radar hydrology in Brazil. J. Appl. Meteor., 26, 118132.

    • Search Google Scholar
    • Export Citation
  • Chang, C. L., , Lo S. L. , , and Yu S. L. , 2006: The parameter optimization in the inverse distance method by genetic algorithm for estimating precipitation. Environ. Monit. Assess., 117, 145155.

    • Search Google Scholar
    • Export Citation
  • Chumchean, S., , Sharma A. , , and Seed A. , 2003: Radar rainfall error variance and its impact on radar rainfall calibration. Phys. Chem. Earth, 28, 2739.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., , Bellon A. , , Duncan M. R. , , and Austin G. L. , 1994: High resolution rainfall measurements by radar for very small basins: The sampling problem reexamined. J. Hydrol., 161, 415428.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., , and Krajewski W. F. , 2004: Characterization of the temporal sampling error in space-time-averaged rainfall estimates using parametric and nonparametric approaches. J. Geophys. Res., 109, D11110, doi:10.1029/2004JD004509.

    • Search Google Scholar
    • Export Citation
  • Germann, U., , Galli G. , , Boscacci M. , , and Bolliger M. , 2006: Radar precipitation measurement in a mountainous region. Quart. J. Roy. Meteor. Soc., 132, 16691692, doi:10.1256/qj.05.190.

    • Search Google Scholar
    • Export Citation
  • Goovaerts, P., 2000: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol., 288, 113129, doi:10.1016/S0022-1694(00)00144-X.

    • Search Google Scholar
    • Export Citation
  • Goudenhoofdt, E., , and Delobble L. , 2008: Evaluation of radar-gauge merging methods for quantitative prediction estimate. Hydrol. Earth Syst. Sci. Discuss., 5, 29753003.

    • Search Google Scholar
    • Export Citation
  • Habib, E., , Krajewski W. F. , , Nespor V. , , and Kruger A. , 1999: Numerical simulation studies of rain gauge data correction due to wind effect. J. Geophys. Res., 104 (D16), 723734.

    • Search Google Scholar
    • Export Citation
  • Habib, E., , Krajewski W. F. , , and Kruger A. , 2001: Sampling errors of tipping-bucket rain gauge measurements. J. Hydrol. Eng., 6, 159166.

    • Search Google Scholar
    • Export Citation
  • Jayawardene, H. K. W. I., , Sonnadara D. U. J. , , and Jayewardene D. R. , 2005: Spatial interpolation of weekly rainfall depth in the dry zone of Sri Lanka. Climate Res., 29, 223231.

    • Search Google Scholar
    • Export Citation
  • Joss, J., , and Waldvogel A. , 1990: Precipitation measurement and hydrology. Radar in Meteorology: Battan Memorial and 40th Anniversary Radar Meteorology Conference, D. Atlas, Ed., Amer. Meteor. Soc., 577–606.

  • Kitchen, M., , and Blackall R. M. , 1992: Representativeness errors in comparisons between radar and gauge measurements of rainfall. J. Hydrol., 134, 1333.

    • Search Google Scholar
    • Export Citation
  • Kohavi, R., 1995: A study of cross-validation and bootstrap for accuracy estimation and model selection. Proc. 14th Int. Joint Conf. on Artificial Intelligence, Vol. 2, Montreal, QC, Canada, Amer. Meteor. Soc., 1137–1143.

  • Krajewski, W. F., , and Smith J. A. , 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25, 13871394.

  • Lloyd, C. D., 2005: Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J. Hydrol., 308, 128150.

    • Search Google Scholar
    • Export Citation
  • Mandapaka, P. V., , Krajewski W. F. , , Ciach G. J. , , Villarini G. , , and Smith J. A. , 2009: Estimation of radar-rainfall error spatial correlation. Adv. Water Resour., 32, 10201030.

    • Search Google Scholar
    • Export Citation
  • McCuen, R. H., 2004: Hydrologic Analysis and Design. 3rd ed. Prentice Hall, 888 pp.

  • Mohr, C. G., , and Vaughan R. L. , 1979: An economical procedure for Cartesian interpolation and display of reflectivity factor data in three-dimensional space. J. Appl. Meteor., 18, 661670.

    • Search Google Scholar
    • Export Citation
  • Morin, E., , Krajewski F. W. , , David C. G. , , Gao X. , , and Sorooshian S. , 2003: Estimating radar intensities from weather radar data: The scale-dependency problem. J. Hydrometeor., 4, 782797.

    • Search Google Scholar
    • Export Citation
  • Rico-Ramirez, M. A., , Cluckie I. D. , , Shepherd G. , , and Pallot A. , 2007: A high-resolution radar experiment on the island of Jersey. Meteor. Appl., 14, 117129.

    • Search Google Scholar
    • Export Citation
  • Royle, A. G., , Clausen F. L. , , and Frederiksen P. , 1981: Practical universal Kriging and automatic contouring. Geoprocessing, 1, 377394.

    • Search Google Scholar
    • Export Citation
  • Sinclair, G., , and Pegram G. , 2004: Combining radar and rain gauge rainfall estimates using conditional merging. Atmos. Sci. Lett., 6, 1922.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., , and Krajewski W. F. , 1993: A modeling study of rainfall rate–reflectivity relationships. Water Resour. Res., 29, 25052514.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , Smith J. A. , , Burges S. J. , , Alonso C. V. , , and Darden R. W. , 1999: Effect of bias adjustment and rain gauge data quality control on radar rainfall estimation. Water Resour. Res., 35, 24872503.

    • Search Google Scholar
    • Export Citation
  • Sun, X., , Mein R. G. , , Keenan T. D. , , and Elliott J. F. , 2000: Flood estimation using radar and raingauge data. J. Hydrol., 239, 418.

  • Thiessen, A. H., 1911: Precipitation averages for large areas. Mon. Wea. Rev., 39, 10821084.

  • Tokay, A., , David B. W. , , Katherine R. W. , , and Paul B. , 2003: Rain gauge and disdrometer measurements during the Keys Area Microphysics Project (KAMP). J. Atmos. Oceanic Technol., 20, 14601477.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , Mandapaka P. V. , , Krajewski W. F. , , and Moore R. J. , 2008: Rainfall and sampling errors: A rain gauge perspective. J. Geophys. Res., 113, D11102, doi:10.1029/2007JD009214.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., , and Brandes E. A. , 1979: Radar measurement of rainfall—A summary. Bull. Amer. Meteor. Soc., 60, 10481058.

  • Zawadzki, I., 1973: Errors and fluctuations of raingauge estimates of areal rainfall. J. Hydrol., 18, 243255.

  • Zawadzki, I., 1975: On radar–raingauge comparison. J. Appl. Meteor., 14, 14301436.

  • Zawadzki, I., 1984: Factors affecting the precision of radar measurement of rain. Preprints, 22nd Int. Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 251–256.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 33 33 8
PDF Downloads 20 20 6

Quantitative Comparison of the Spatial Distribution of Radar and Gauge Rainfall Data

View More View Less
  • 1 Sejong University, Seoul, South Korea
  • | 2 University Catholique de Louvain, Louvain-la-Neuve, Belgium
  • | 3 Sejong University, Seoul, South Korea
© Get Permissions
Restricted access

Abstract

The common statement that a rain gauge network usually provides better observation at specific points while weather radar provides more accurate observation of the spatial distribution of rain field over a large area has never been subjected to quantitative evaluation. The aim of this paper is to evaluate the statement by using some statistical criteria. The Monte Carlo simulation experiment, inverse distance weighting (IDW) interpolation method, and cross-validation technique are used to investigate the relation between the accuracy of the interpolated rainfall and the rain gauge density. The radar reflectivity–rainfall intensity (ZR) relationship is constructed by the least squares fitting method from observation data of radar and rain gauges. The variation in this relationship and the accuracy of the radar rainfall with rain gauge density are evaluated by using the Monte Carlo simulation experiment. Three storm events are selected as the case studies. The obtained results show that the accuracy of interpolated and radar rainfall increases nonlinearly with increasing gauge density. The higher correlation coefficient (γ) value of radar-rainfall estimation, compared to gauge interpolation, especially in the convective storm, proves that radar observation provides a more accurate spatial structure of the rain field than gauge observation does.

Corresponding author address: Deg-Hyo Bae, Department of Civil and Environmental Engineering, Sejong University, 98 Kunja-Dong, Kwangjin-Gu, Seoul 143-747, South Korea. E-mail: dhbae@sejong.ac.kr

Abstract

The common statement that a rain gauge network usually provides better observation at specific points while weather radar provides more accurate observation of the spatial distribution of rain field over a large area has never been subjected to quantitative evaluation. The aim of this paper is to evaluate the statement by using some statistical criteria. The Monte Carlo simulation experiment, inverse distance weighting (IDW) interpolation method, and cross-validation technique are used to investigate the relation between the accuracy of the interpolated rainfall and the rain gauge density. The radar reflectivity–rainfall intensity (ZR) relationship is constructed by the least squares fitting method from observation data of radar and rain gauges. The variation in this relationship and the accuracy of the radar rainfall with rain gauge density are evaluated by using the Monte Carlo simulation experiment. Three storm events are selected as the case studies. The obtained results show that the accuracy of interpolated and radar rainfall increases nonlinearly with increasing gauge density. The higher correlation coefficient (γ) value of radar-rainfall estimation, compared to gauge interpolation, especially in the convective storm, proves that radar observation provides a more accurate spatial structure of the rain field than gauge observation does.

Corresponding author address: Deg-Hyo Bae, Department of Civil and Environmental Engineering, Sejong University, 98 Kunja-Dong, Kwangjin-Gu, Seoul 143-747, South Korea. E-mail: dhbae@sejong.ac.kr
Save