Stochastic Space–Time Disaggregation of Rainfall into DSD fields

Marc Schleiss École Polytechnique Fédérale de Lausanne, School of Architecture, Civil and Environmental Engineering (ENAC), Laboratoire de Télédétection Environnementale, Lausanne, Switzerland

Search for other papers by Marc Schleiss in
Current site
Google Scholar
PubMed
Close
and
Alexis Berne École Polytechnique Fédérale de Lausanne, School of Architecture, Civil and Environmental Engineering (ENAC), Laboratoire de Télédétection Environnementale, Lausanne, Switzerland

Search for other papers by Alexis Berne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A stochastic method to disaggregate rain rate fields into drop size distribution (DSD) fields is proposed. It is based on a previously presented DSD simulator that has been modified to take into account prescribed block-averaged rain rate values at a coarser scale. The integral quantity used to drive the disaggregation process can be the rain rate, the radar reflectivity, or any variable directly related to the DSD. The proposed method is illustrated and qualitatively evaluated using radar rain rate data provided by MeteoSwiss for two rain events of very contrasted type (stratiform versus convective). The evaluation shows that both types of rainfall are correctly disaggregated, although the general agreement in terms of rain rate distributions, intermittency, and space–time structures is much better for the stratiform case. Possible extensions and generalizations of the technique (e.g., using radar reflectivities at two different frequencies or polarizations to drive the disaggregation process) are discussed at the end of the paper.

Corresponding author address: Alexis Berne, EPFL-LTE, GR C2 564, 1015 Lausanne, Switzerland. E-mail: alexis.berne@epfl.ch

Abstract

A stochastic method to disaggregate rain rate fields into drop size distribution (DSD) fields is proposed. It is based on a previously presented DSD simulator that has been modified to take into account prescribed block-averaged rain rate values at a coarser scale. The integral quantity used to drive the disaggregation process can be the rain rate, the radar reflectivity, or any variable directly related to the DSD. The proposed method is illustrated and qualitatively evaluated using radar rain rate data provided by MeteoSwiss for two rain events of very contrasted type (stratiform versus convective). The evaluation shows that both types of rainfall are correctly disaggregated, although the general agreement in terms of rain rate distributions, intermittency, and space–time structures is much better for the stratiform case. Possible extensions and generalizations of the technique (e.g., using radar reflectivities at two different frequencies or polarizations to drive the disaggregation process) are discussed at the end of the paper.

Corresponding author address: Alexis Berne, EPFL-LTE, GR C2 564, 1015 Lausanne, Switzerland. E-mail: alexis.berne@epfl.ch
Save
  • Bárdossy, A., 1998: Generating precipitation time series using simulated annealing. Water Resour. Res., 34, 17371744, doi:10.1029/98WR00981.

    • Search Google Scholar
    • Export Citation
  • Bárdossy, A., and Pegram G. , 2011: Downscaling precipitation using regional climate models and circulation patterns toward hydrology. Water Resour. Res., 47, W04505, doi:10.1029/2010WR009689.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., 1977: Terminal velocity adjustment for cloud and precipitation drops aloft. J. Atmos. Sci., 34, 12931298.

  • Bo, Z., Islam S. , and Eltahir A. B. , 1994: Aggregation-disaggregation properties of a stochastic rainfall model. Water Resour. Res., 30, 34233435.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar. Cambridge University Press, 662 pp.

  • Chilès, J.-P., and Delfiner P. , 1999: Geostatistics: Modeling Spatial Uncertainty. Wiley Series in Probability and Statistics, Wiley, 695 pp.

  • Cowpertwait, P. S. P., O’Connell P. E. , Metcalfe A. V. , and Mawdsley J. A. , 1996: Stochastic point process modelling of rainfall. II. Regionalisation and disaggregation. J. Hydrol., 175, 4765.

    • Search Google Scholar
    • Export Citation
  • Cressie, N., and Hawkins D. M. , 1990: Robust estimation of the variogram. J. Math. Geol., 12, 115125.

  • Finlay, P. J., Fell R. , and Maguire P. K. , 1997: The relationship between the probability of landslide occurrence and rainfall. Can. Geotech. J., 34, 811824.

    • Search Google Scholar
    • Export Citation
  • Germann, U., Galli G. , Boscacci M. , and Bolliger M. , 2006: Radar precipitation measurement in a mountainous region. Quart. J. Roy. Meteor. Soc., 132, 16691692, doi:10.1256/qj.05.190.

    • Search Google Scholar
    • Export Citation
  • Guillot, G., 1999: Approximation of Sahelian rainfall fields with meta-Gaussian random functions. Part 1: Model definition and methodology. Stoch. Env. Res. Risk Assess., 13 (1–2), 100112.

    • Search Google Scholar
    • Export Citation
  • Guntner, A., Olsson J. , Calver A. , and Gannon B. , 2001: Cascade-based disaggregation of continuous rainfall time series: The influence of climate. Hydrol. Earth Syst. Sci., 5, 145164.

    • Search Google Scholar
    • Export Citation
  • Hershenhorn, J., and Woolhiser D. A. , 1987: Disaggregation of daily rainfall. J. Hydrol., 95, 299322.

  • Jaffrain, J., Studzinski A. , and Berne A. , 2011: A network of disdrometers to quantify the small-scale variability of the raindrop size distribution. Water Resour. Res., 47, W00H06, doi:10.1029/2010WR009872.

    • Search Google Scholar
    • Export Citation
  • Jennings, S. A., Lambert M. F. , and Kuczera G. , 2010: Generating synthetic high resolution rainfall time series at sites with only daily rainfall using a master–target scaling approach. J. Hydrol., 393 (3–4), 163173, doi:10.1016/j.jhydrol.2010.08.013.

    • Search Google Scholar
    • Export Citation
  • Journel, A. G., and Huijbregts C. J. , 1978: Mining Geostatistics. Academic Press, 600 pp.

  • Kinnell, P. I. A., 2005: Raindrop-impact-induced erosion processes and prediction: A review. Hydrol. Processes, 19, 28152844.

  • Koutsoyiannis, D., and Onof C. , 2001: Rainfall disaggregation using adjusting procedures on a Poisson cluster model. J. Hydrol., 246 (1–4), 109122, doi:10.1016/S0022-1694(01)00363-8.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Smith J. A. , 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour.,25 (8–12), 1387–1394.

  • Kumar, P., and Foufoula-Georgiou E. , 1994: Characterizing multiscale variability of zero intermittency in spatial rainfall. J. Appl. Meteor., 33, 15161525.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., and Siddani R. K. , 2011: Scale dependence of spatiotemporal intermittency of rain. Water Resour. Res., 47, W08522, doi:10.1029/2010WR010070.

    • Search Google Scholar
    • Export Citation
  • Leijnse, H., Uijlenhoet R. , and Stricker J. N. M. , 2007: Rainfall measurement using radio links from cellular communication networks. Water Resour. Res., 43, W03201, doi:10.1029/2006WR005631.

    • Search Google Scholar
    • Export Citation
  • Leuangthong, O., and Deutsch C. V. , 2003: Stepwise conditional transformation for simulation of multiple variables. Math. Geol., 35, 155173.

    • Search Google Scholar
    • Export Citation
  • Li, B., Murthi A. , Bowman K. , North G. , Genton M. , and Sherman M. , 2009: Statistical tests of Taylor’s hypothesis: An application to precipitation fields. J. Hydrometeor., 10, 254265.

    • Search Google Scholar
    • Export Citation
  • Mackay, N. G., Chandler R. E. , Onof C. , and Wheater H. S. , 2001: Disaggregation of spatial rainfall fields for hydrological modelling. Hydrol. Earth Syst. Sci., 5, 165173.

    • Search Google Scholar
    • Export Citation
  • Matheron, G., 1965: Les Variables Régionalisées et Leur Estimation. Masson et Cie, 305 pp.

  • Messer, H., Zinevich A. , and Alpert P. , 2006: Environmental monitoring by wireless communication networks. Science, 312, 713, doi:10.1126/science.1120034.

    • Search Google Scholar
    • Export Citation
  • Olssen, J., and Berndtsson R. , 1998: Temporal rainfall disaggregation based on scaling properties. Water Sci. Technol., 37, 7379.

  • Onibon, H., Lebel T. , Afouda A. , and Guillot G. , 2004: Gibbs sampling for conditional spatial disaggregation of rain fields. Water Resour. Res., 40, W08401, doi:10.1029/2003WR002009.

    • Search Google Scholar
    • Export Citation
  • Onof, C., and Arnbjerg-Nielsen K. , 2009: Quantification of anticipated future changes in high resolution design rainfall for urban areas. Atmos. Res., 92, 350363.

    • Search Google Scholar
    • Export Citation
  • Ormsbee, L. E., 1986: Rainfall disaggregation model for continuous hydrological modeling. J. Hydraul. Eng., 115, 507525.

  • Pavlopoulos, H., 2011: A stochastic framework for downscaling processes of spatial averages based on the property of spectral multiscaling and its statistical diagnosis on spatio-temporal rainfall fields. Adv. Water Resour., 34, 9901011, doi:10.1016/j.advwatres.2011.05.006.

    • Search Google Scholar
    • Export Citation
  • Perica, S., and Foufoula-Georgiou E. , 1996: Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions. J. Geophys. Res., 101 (D21), 26 34726 362.

    • Search Google Scholar
    • Export Citation
  • Rebora, N., Ferraris L. , von Hardenberg J. , and Provenzale A. , 2006a: Rainfall downscaling and flood forecasting: A case study in the Mediterranean area. Nat. Hazards Earth Syst. Sci., 6, 611619.

    • Search Google Scholar
    • Export Citation
  • Rebora, N., Ferraris L. , von Hardenberg J. , and Provenzale A. , 2006b: RainFARM: Rainfall downscaling by a filtered autoregressive model. J. Hydrometeor., 7, 724738.

    • Search Google Scholar
    • Export Citation
  • Ripley, B. D., 1987: Stochastic Simulation. Wiley, 237 pp.

  • Rosewell, C. J., 1986: Rainfall kinetic energy in eastern Australia. J. Climate Appl. Meteor., 25, 16951701.

  • Schleiss, M. A., Berne A. , and Uijlenhoet R. , 2009: Geostatistical simulation of two-dimensional fields of raindrop size distributions at the meso-γ scale. Water Resour. Res., 45, W07415, doi:10.1029/2008WR007545.

    • Search Google Scholar
    • Export Citation
  • Schleiss, M. A., Jaffrain J. , and Berne A. , 2011: Statistical analysis of rainfall intermittency at small spatial and temporal scales. Geophys. Res. Lett., 38, L18403, doi:10.1029/2011GL049000.

    • Search Google Scholar
    • Export Citation
  • Schleiss, M. A., Jaffrain J. , and Berne A. , 2012: Stochastic simulation of intermittent DSD fields in time. J. Hydrometeor., 13, 621637.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., 2005: On the shape–slope relation of drop size distributions in convective rain. J. Appl. Meteor., 44, 11461151.

  • Sivakumar, B., Sorooshian S. , Gupta H. V. , and Gao X. , 2001: A chaotic approach to rainfall disaggregation. Water Resour. Res., 37, 6172.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 164, 476490.

  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775.

    • Search Google Scholar
    • Export Citation
  • Willis, P. T., 1984: Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 16481661.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., Vivekanandan J. , and Brandes E. , 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830841.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 710 573 37
PDF Downloads 116 39 1