• Benton, G. S., , Blackburn R. T. , , and Snead V. O. , 1950: The role of the atmosphere in the hydrologic cycle. Eos, Trans. Amer. Geophys. Union, 31, 6173.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., , Luo Y. , , Mitchell K. E. , , and Betts A. K. , 2003: Eta model estimated land surface processes and the hydrological cycle of the Mississippi basin. J. Geophys. Res., 108, 8852, doi:10.1029/2002JD003192.

    • Search Google Scholar
    • Export Citation
  • Berg, L. K., , and Kassianov E. I. , 2008: Temporal variation of fair-weather cumulus statistics at the ACRF SGP Site. J. Climate, 21, 33443358.

    • Search Google Scholar
    • Export Citation
  • Berg, L. K., and Coauthors, 2009: Overview of the Cumulus Humilis Aerosol Processing Study. Bull. Amer. Meteor. Soc., 90, 16531667.

  • Bosilovich, M. G., , and Schubert S. D. , 2001: Precipitation recycling over the central United States diagnosed from the GEOS-1 Data Assimilation System. J. Hydrometeor., 2, 2635.

    • Search Google Scholar
    • Export Citation
  • Brock, F. V., , Crawford K. C. , , Elliott R. L. , , Cuperus G. W. , , Stadler S. J. , , Johnson H. L. , , and Eilts M. D. , 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519.

    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., , Entekhabi D. , , and Eagleson P. S. , 1993: Estimation of continental precipitation recycling. J. Climate, 6, 10771089.

  • Budyko, M. I., 1974: Climate and Life. Academic Press, 508 pp.

  • Chen, F., , and Avissar R. , 1994: Impact of land-surface moisture variability on local shallow convective cumulus and precipitation in large-scale models. J. Appl. Meteor., 33, 13821401.

    • Search Google Scholar
    • Export Citation
  • Cheng, M.-D., 1989: Effects of downdrafts and mesoscale convective organization on the heat and moisture budgets of tropical cloud clusters. Part II: Effects of convective-scale downdrafts. J. Atmos. Sci., 46, 15401565.

    • Search Google Scholar
    • Export Citation
  • Cho, H. R., , and Ogura Y. , 1974: A relationship between cloud activity and the low-level convergence as observed in Reed-Recker’s composite easterly waves. J. Atmos. Sci., 31, 20582065.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., , Huang J. Y. , , and Stensrud D. J. , 2010: Environmental factors in the upscale growth and longevity of MCSs derived from rapid update cycle analyses. Mon. Wea. Rev., 138, 35143539.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies of the North Pacific Ocean. J. Phys. Oceanogr., 6, 249266.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., , Schlosser C. A. , , and Brubaker K. L. , 2009: Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeor., 10, 278289.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., , Mitchell K. E. , , Lin Y. , , Rogers E. , , Grunmann P. , , Koren V. , , Gayno G. , , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., , and Bras R. A. , 1994: Precipitation recycling in the Amazon basin. Quart. J. Roy. Meteor. Soc., 120, 861880.

  • Hong, S.-Y., , and Kalnay E. , 2000: Role of sea-surface temperature and soil-moisture feedback in the 1998 Oklahoma–Texas drought. Nature, 408, 842844.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., , and Kalnay E. , 2002: The 1998 Oklahoma–Texas drought: Mechanistic experiments with NCEP global and regional models. J. Climate, 15, 945963.

    • Search Google Scholar
    • Export Citation
  • Huang, J., , Van den Dool H. M. , , and Georgakakos K. P. , 1996: Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J. Climate, 9, 13501362.

    • Search Google Scholar
    • Export Citation
  • Illston, B. G., , Basara J. B. , , Fisher D. K. , , Elliott R. , , Fiebrich C. A. , , Crawford K. C. , , Humes K. , , and Hunt E. , 2008: Mesoscale monitoring of soil moisture across a statewide network. J. Atmos. Oceanic Technol., 25, 167182.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140.

  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , Ramanathan Y. , , Pan H.-L. , , Pasch R. J. , , and Molinari J. , 1980: Cumulus parameterization and rainfall rates. Mon. Wea. Rev.,108, 465–472.

  • Lamb, P. J., , and Richman M. B. , 1990: Use of cooperative weather station data in contemporary climate research. Trans. Ill. State Acad. Sci., 83, 7081.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., , and Jiang J. H. , 2010: Touring the atmosphere aboard the A-Train. Phys. Today, 63 (7), 3641.

  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493.

    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301321.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Miller, M. A., and Coauthors, 2007a: SGP Cloud and Land Surface Interaction Campaign (CLASIC): Science and implementation plan. Office of Biological and Environmental Research Office of Science, U.S. Department of Energy DoE/SC-ARM-0703, 14 pp. [Available online at http://www.arm.gov/publications/programdocs/doe-sc-arm-0703.pdf.]

  • Miller, M. A., and Coauthors, 2007b: SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement platforms. Office of Biological and Environmental Research Office of Science, U.S. Department of Energy DoE/SC-ARM-0704, 18 pp. [Available online at http://www.arm.gov/publications/programdocs/doe-sc-arm-0704.pdf.]

  • Mitchell, K. E., and Coauthors, 2004a: NCEP completes 25-year North American Reanalysis: Precipitation assimilation and land surface are two hallmarks. GEWEX News, Vol. 14, No. 2, International GEWEX Project Office, Silver Spring, MD, 9–12.

  • Mitchell, K. E., and Coauthors, 2004b: The multi-institution North American Land Data Assimilation System (NLDAS): Using multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, DO7S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Montroy, D. L., , Richman M. B. , , and Lamb P. J. , 1998: Observed nonlinearities of monthly teleconnections between tropical Pacific sea surface temperature anomalies and central and eastern North American precipitation. J. Climate, 11, 18121835.

    • Search Google Scholar
    • Export Citation
  • Oklahoma Climatological Survey, 2007: Oklahoma monthly climate summary: June 2007. Oklahoma Climatological Survey, University of Oklahoma, 18 pp. [Available online at http://climate.ok.gov/summaries/monthly/2007/MCS_June_2007.pdf.]

  • Rabin, R. M., , Stadler S. , , Wetzel P. J. , , Stensrud D. J. , , and Gregory M. , 1990: Observed effects of landscape variability on convective clouds. Bull. Amer. Meteor. Soc., 71, 272280.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1967: Atmospheric water vapor transport and the water balance of North America: Part I. Characteristics of the water vapor flux field. Mon. Wea. Rev., 95, 403426.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1968: Atmospheric water vapor transport and the water balance of North America. Part II: Large-scale water balance investigations. Mon. Wea. Rev., 96, 720734.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1971: A study of the hydrology of eastern North America using atmospheric vapor flux data. Mon. Wea. Rev., 99, 119135.

    • Search Google Scholar
    • Export Citation
  • Richman, M. B., , and Lamb P. J. , 1985: Climate pattern analysis of three- and seven-day summer rainfall in the central United States: Some methodological considerations and a regionalization. J. Climate Appl. Meteor., 24, 13251343.

    • Search Google Scholar
    • Export Citation
  • Schär, C., , Lüthi D. , , Beyerle U. , , and Heise E. , 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741.

    • Search Google Scholar
    • Export Citation
  • Schneider, J. M., , Fisher D. K. , , Elliot R. L. , , Brown G. O. , , and Bahrmann C. P. , 2003: Spatiotemporal variation in soil water: First results from ARM SGP CART Network. J. Hydrometeor., 4, 106120.

    • Search Google Scholar
    • Export Citation
  • Schroeder, T. A., , Hember R. , , Coops N. C. , , and Liang S. , 2009: Validation of solar radiation surfaces from MODIS and Reanalysis data over topographically complex terrain. J. Appl. Meteor. Climatol., 48, 24412458.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., , and Johnson R. H. , 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976.

    • Search Google Scholar
    • Export Citation
  • Shafran, P. C., , Woollen J. , , Ebisuzaki W. , , Shi W. , , Fan Y. , , Grumbine R. W. , , and Fennessy M. , 2004: Observation data used for assimilation in the NCEP North American Regional Reanalysis. Preprints, 14th Conf. on Applied Climatology, Seattle, WA, Amer. Meteor. Soc., 1.4. [Available online at https://ams.confex.com/ams/84Annual/techprogram/paper_71689.htm.]

  • Shi, W., , Yarosh W. , , Higgins R. W. , , and Joyce R. , 2003: Processing daily rain-gauge precipitation data for the Americas for the NOAA Climate Prediction Center. Preprints, 19th Conf. on Interactive Information Processing Systems, Long Beach, CA, Amer. Meteor. Soc., P1.6. [Available online at https://ams.confex.com/ams/annual2003/techprogram/paper_56719.htm.]

  • Wang, G., , Kim Y. , , and Wang D. , 2007: Quantifying the strength of soil moisture–precipitation coupling and its sensitivity to changes in surface water budget. J. Hydrometeor., 8, 551570.

    • Search Google Scholar
    • Export Citation
  • WCRP, 1992: Scientific Plan for the GEWEX Continental-Scale International Project (GCIP). World Meteorological Organization WCRP Rep. 67, 65 pp.

  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Elsevier, 407 pp.

  • Xie, P., , Yatagai A. , , Chen M. , , Hayasaka T. , , Fuima Y. , , Liu C. , , and Yang S. , 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., , Esbensen S. , , and Chu J. H. , 1973: Determination of average bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627.

    • Search Google Scholar
    • Export Citation
  • Zangvil, A., , Portis D. H. , , and Lamb P. J. , 1993: Diurnal variations in the water vapor budget components over the Midwestern United States in summer 1979. Geophys. Monogr., Vol. 75, Amer. Geophys. Union, 53–63.

  • Zangvil, A., , Portis D. H. , , and Lamb P. J. , 2001: Investigation of the large-scale atmospheric moisture field over the midwestern United States in relation to summer precipitation. Part I: Relationships between moisture budget components on different timescales. J. Climate, 14, 582597.

    • Search Google Scholar
    • Export Citation
  • Zangvil, A., , Portis D. H. , , and Lamb P. J. , 2004: Investigation of the large-scale atmospheric moisture field over the midwestern United States in relation to summer precipitation. Part II: Recycling of local evapotranspiration and association with soil moisture and crop yields. J. Climate, 17, 32833301.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., , Barlage M. , , Castro C. , , and Fling K. , 2010: Comparison of land–precipitation coupling strength using observations and models. J. Hydrometeor., 11, 979994.

    • Search Google Scholar
    • Export Citation
  • Zhao, Q., , Black T. L. , , and Baldwin M. E. , 1997: Implementation of the cloud prediction scheme in the Eta model at NCEP. Wea. Forecasting, 12, 697712.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 97 97 23
PDF Downloads 84 84 19

Investigation of Large-Scale Atmospheric Moisture Budget and Land Surface Interactions over U.S. Southern Great Plains including for CLASIC (June 2007)

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • | 2 Jacob Bluestein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker, Israel
© Get Permissions
Restricted access

Abstract

The atmospheric moisture budget and surface interactions for the southern Great Plains are evaluated for contrasting May–June periods (1998, 2002, 2006, and 2007) as background for the Cloud and Land Surface Interaction Campaign (CLASIC) of (wet) 7–30 June 2007. Budget components [flux divergence (MFD), storage change (dPW), and inflow (IF/A)] are estimated from North American Regional Reanalysis data. Precipitation (P) is calculated from NCEP daily gridded data, evapotranspiration (E) is obtained as moisture budget equation residual, and the recycling ratio (PE/P) is estimated using a new equation. Regional averages are presented for months and five daily P categories. Monthly budget results show that E and E − P are strongly positively related to P; EP generally is positive and balanced by positive MFD that results from its horizontal velocity divergence component (HD, positive) exceeding its horizontal advection component (HA, negative). An exception is 2007 (CLASIC), when EP and MFD are negative and supported primarily by negative HA. These overall monthly results characterize low P days (≤0.6 mm), including for nonanomalous 2007, but weaken as daily P approaches 4 mm. In contrast, for 4 < P ≤ 8 mm day−1 EP and MFD are moderately negative and balanced largely by negative HD except in 2007 (negative HA). This overall pattern was accentuated (including for nonanomalous 2007) when daily P > 8 mm. Daily PE/P ratios are small and of limited range, with P category averages 0.15–0.19. Ratios for 2007 are above average only for daily P ≤ 4 mm. CLASIC wetness principally resulted from distinctive MFD characteristics. Solar radiation, soil moisture, and crop status/yield information document surface interactions.

Additional affiliation: School of Meteorology, University of Oklahoma, Norman, Oklahoma.

Corresponding author address: Professor Peter J. Lamb, Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, 120 David L. Boren Boulevard, Suite 2100, Norman, OK 73072-7304. E-mail: plamb@ou.edu

This article is included in the In Honor of Peter J. Lamb special collection.

Abstract

The atmospheric moisture budget and surface interactions for the southern Great Plains are evaluated for contrasting May–June periods (1998, 2002, 2006, and 2007) as background for the Cloud and Land Surface Interaction Campaign (CLASIC) of (wet) 7–30 June 2007. Budget components [flux divergence (MFD), storage change (dPW), and inflow (IF/A)] are estimated from North American Regional Reanalysis data. Precipitation (P) is calculated from NCEP daily gridded data, evapotranspiration (E) is obtained as moisture budget equation residual, and the recycling ratio (PE/P) is estimated using a new equation. Regional averages are presented for months and five daily P categories. Monthly budget results show that E and E − P are strongly positively related to P; EP generally is positive and balanced by positive MFD that results from its horizontal velocity divergence component (HD, positive) exceeding its horizontal advection component (HA, negative). An exception is 2007 (CLASIC), when EP and MFD are negative and supported primarily by negative HA. These overall monthly results characterize low P days (≤0.6 mm), including for nonanomalous 2007, but weaken as daily P approaches 4 mm. In contrast, for 4 < P ≤ 8 mm day−1 EP and MFD are moderately negative and balanced largely by negative HD except in 2007 (negative HA). This overall pattern was accentuated (including for nonanomalous 2007) when daily P > 8 mm. Daily PE/P ratios are small and of limited range, with P category averages 0.15–0.19. Ratios for 2007 are above average only for daily P ≤ 4 mm. CLASIC wetness principally resulted from distinctive MFD characteristics. Solar radiation, soil moisture, and crop status/yield information document surface interactions.

Additional affiliation: School of Meteorology, University of Oklahoma, Norman, Oklahoma.

Corresponding author address: Professor Peter J. Lamb, Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, 120 David L. Boren Boulevard, Suite 2100, Norman, OK 73072-7304. E-mail: plamb@ou.edu

This article is included in the In Honor of Peter J. Lamb special collection.

Save