• Alsdorf, D. E., , Rodríguez E. , , and Lettenmaier D. P. , 2007: Measuring surface water from space. Rev. Geophys., 45, RG2002, doi:10.1029/2006RG000197.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., , and Boer G. J. , 2001: Effects of simulated climate change on the hydrology of major river basins. J. Geophys. Res., 106 (D4), 33353348.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., , Chiew F. H. S. , , and Grayson R. B. , 1999: A river flow routing scheme for general circulation models. J. Geophys. Res., 104 (D12), 14 34714 357.

    • Search Google Scholar
    • Export Citation
  • Bamber, J. L., 1994: Ice sheet altimeter processing scheme. Int. J. Remote Sens., 15, 925938.

  • Biancamaria, S., , Bates P. D. , , Boone A. , , and Mognard N. M. , 2009: Large-scale coupled hydrologic and hydraulic modelling of the Ob river in Siberia. J. Hydrol., 379, 136150, doi:10.1016/j.jhydrol.2009.09.054.

    • Search Google Scholar
    • Export Citation
  • Bousquet, P., and Coauthors, 2006: Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443, 439443, doi:10.1038/nature05132.

    • Search Google Scholar
    • Export Citation
  • Chow, V. T., 1959: Open-Channel Hydraulics. McGraw-Hill, 680 pp.

  • Coe, M. T., , Costa M. H. , , and Howard E. A. , 2008: Simulating the surface waters of the Amazon River basin: Impacts of new river geomorphic and flow parameterization. Hydrol. Processes, 22, 25422553, doi:10.1002/hyp.6850.

    • Search Google Scholar
    • Export Citation
  • Cogley, J. G., 2003: GGHYDRO—Global hydrographic data, release 2.3. Trent Tech. Note 2003-1, 11 pp. [Available online at http://people.trentu.ca/~gcogley/glaciology/index.htm.]

  • Crétaux, J. F., and Coauthors, 2011: SOLS: A lake database to monitor in the near real time water level and storage variations from remote sensing data. Adv. Space Res., 47, 14971507.

    • Search Google Scholar
    • Export Citation
  • Dadson, S. J., , Ashpole I. , , Harris P. , , Davies H. N. , , Clark D. B. , , Blyth E. , , and Taylor C. M. , 2010: Wetland inundation dynamics in a model of land surface climate: Evaluation in the Niger inland delta region. J. Geophys. Res., 115, D23114, doi:10.1029/2010JD014474.

    • Search Google Scholar
    • Export Citation
  • Decharme, B., , Alkama R. , , Papa F. , , Faroux S. , , Douville H. , , and Prigent C. , 2012: Global off-line evaluation of the ISBA-TRIP flood model. Climate Dyn., 38 (7–8), 13891412, doi:10.1007/s00382-011-1054-9.

    • Search Google Scholar
    • Export Citation
  • Döll, P., , Kaspar F. , , and Lehner B. , 2003: A global hydrological model for deriving water availability indicators: Model tuning and validation. J. Hydrol., 270, 105134, doi:10.1016/S0022-1694(02)00283-4.

    • Search Google Scholar
    • Export Citation
  • Dunne, T., , Mertes L. A. K. , , Meade R. H. , , Richey J. E. , , and Forsberg B. R. , 1998: Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. GSA Bull., 110, 450467.

    • Search Google Scholar
    • Export Citation
  • Estrela, T., , and Quintas L. , 1994: Use of GIS in the modelling of flows on floodplains. Proceedings of the Second International Conference on River Flood Hydraulics, Wiley, 177–189.

  • Getirana, A. C. V., , Bonnet M.-P. , , and Martinez J.-M. , 2009a: Evaluating parameter effects in a DEM ‘burning’ process based on land cover data. Hydrol. Processes, 23, 23162325, doi:10.1002/hyp.7303.

    • Search Google Scholar
    • Export Citation
  • Getirana, A. C. V., , Bonnet M.-P. , , Rotunno Filho O. C. , , and Mansur W. J. , 2009b: Improving hydrological information acquisition from DEM processing in floodplains. Hydrol. Processes, 23, 502514, doi:10.1002/hyp.7167.

    • Search Google Scholar
    • Export Citation
  • Getirana, A. C. V., , Boone A. , , and Mognard N. , 2012: Automatic calibration of a flow routing scheme constrained by radar altimetry data. Extended Abstracts, 20 Years of Progress in Radar Altimetry Symp., Venice, Italy, European Space Agency, 119. [Available online at http://www.congrexprojects.com/docs/12c01_docs/20ypra_abstracts_12_08_27_v9.pdf.]

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., , and Dümenil L. , 1998: A parameterization of lateral water flow for the global scale. Climate Dyn., 14, 1741.

  • Horritt, M. S., , and Bates P. D. , 2002: Evaluation of 1D and 2D numerical models for predicting river flood inundation. J. Hydrol., 268, 8799, doi:10.1016/S0022-1694(02)00121-X.

    • Search Google Scholar
    • Export Citation
  • Kirpich, Z. P., 1940: Time of concentration of small agricultural watersheds. Civ. Eng., 10, 362.

  • Krinner, G., 2003: Impact of lakes and wetlands on boreal climate. J. Geophys. Res., 108, 4520, doi:10.1029/2002JD002597.

  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, doi:10.1016/j.envsoft.2005.07.004.

    • Search Google Scholar
    • Export Citation
  • Lehner, B., , and Döll P. , 2004: Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol., 296, 122.

    • Search Google Scholar
    • Export Citation
  • Masson, V., , Champeaux J.-L. , , Chauvin C. , , Meriguet C. , , and Lacaze R. , 2003: A global database of land surface parameters at 1-km resolution in meteorological and climate models. J. Climate, 16, 12611282.

    • Search Google Scholar
    • Export Citation
  • Masutomi, Y., , Inui Y. , , Takahashi K. , , and Matsuoka U. , 2009: Development of highly accurate global polygonal drainage basin data. Hydrol. Processes, 23, 572584.

    • Search Google Scholar
    • Export Citation
  • Melack, J. M., , Hess L. L. , , Gastil M. , , Forsberg B. R. , , Hamilton S. K. , , Lima I. B. T. , , and Novo E. M. L. M. , 2004: Regionalization of methane emissions in the Amazon basin with microwave remote sensing. Global Change Biol., 10, 530544.

    • Search Google Scholar
    • Export Citation
  • Miller, J., , Russell G. , , and Caliri G. , 1994: Continental scale river flow in climate models. J. Climate, 7, 914928.

  • Mohamed, Y. A., , van den Hurk B. J. J. M. , , Savenije H. H. G. , , and Bastiaanssen W. G. M. , 2005: Impact of the Sudd wetland on the Nile hydroclimatology. Water Resour. Res., 41, W08420, doi:10.1029/2004WR003792.

    • Search Google Scholar
    • Export Citation
  • Mouffe, M., , Getirana A. C. V. , , Ricci S. , , Lion C. , , Biancamaria S. , , Mognard N. , , Boone A. , , and Rogel P. , 2011: Towards SWOT data assimilation for hydrology: Automatic calibration of global flow routing model parameters in the Amazon basin. American Geophysical Union, Fall Meeting 2011, Abstract H23G-1364.

  • Noilhan, J., , and Mahfouf J.-F. , 1996: The ISBA land surface parameterisation scheme. Global Planet. Change, 13 (1–4), 145159, doi:10.1016/0921-8181(95)00043-7.

    • Search Google Scholar
    • Export Citation
  • Oki, T., , and Sud Y. C. , 1998: Design of total runoff integrating pathways (TRIP)—A global river channel network. Earth Interact., 2. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Paiva, R. C. D., , Collischonn W. , , and Buarque D. C. , 2012: Validation of a full hydrodynamic model for large-scale hydrologic modelling in the Amazon. Hydrol. Processes, doi:10.1002/hyp.8425, in press.

    • Search Google Scholar
    • Export Citation
  • Papa, F., , Prigent C. , , Aires F. , , Jimenez C. , , Rossow W. B. , , and Matthews E. , 2010: Interannual variability of surface water extent at the global scale, 1993–2004. J. Geophys. Res., 115, D12111, doi:10.1029/2009JD012674.

    • Search Google Scholar
    • Export Citation
  • Portmann, F. T., , Siebert S. , , and Döll P. , 2010: MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new hight-resolution data set for agricultural and hydrological modeling. Global Biogeochem. Cycles, 24, GB1011, doi:10.1029/2008GB003435.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., , Papa F. , , Aires F. , , Rossow W. B. , , and Matthews E. , 2007: Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J. Geophys. Res., 112, D12107, doi:10.1029/2006JD007847.

    • Search Google Scholar
    • Export Citation
  • Richey, J. E., , Mertes L. A. K. , , Dunne T. , , Victoria R. , , Forsberg B. R. , , Tancredi A. C. F. N. S. , , and Oliveira E. , 1989: Source and routing of the Amazon River flood wave. Global Biogeochem. Cycles, 3, 191204.

    • Search Google Scholar
    • Export Citation
  • Rodriguez, E., , Morris C. S. , , Belz J. E. , , Chapin E. C. , , Martin J. M. , , Daffer W. , , and Hensley S. , 2005: An assessment of the SRTM topographic products. Jet Propulsion Laboratory Tech. Rep. JPL D-31639, 143 pp.

  • Rodriguez, E., , Morris C. S. , , and Belz J. E. , 2006: A global assessment of the SRTM performance. Photogramm. Eng. Remote Sens., 72, 249260.

    • Search Google Scholar
    • Export Citation
  • Sausen, R., , Schubert S. , , and Dumenil L. , 1994: A model of river runoff for use in coupled atmosphere-ocean models. J. Hydrol., 155, 337352.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , Goteti G. , , and Wood E. F. , 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111.

    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 1993: Evaporation. Handbook of Hydrology, D. Maidment, Ed., McGraw-Hill, 1–4.

  • Vörösmarty, C. J., , Moore B. III, , Grace A. L. , , and Gildea M. P. , 1989: Continental scale models of water balance and fluvial transport: An application to South America. Global Biogeochem. Cycles, 3, 241265.

    • Search Google Scholar
    • Export Citation
  • Wilson, M., , Bates P. , , Alsdorf D. , , Forsberg B. , , Horritt M. , , Melack J. , , Frappart F. , , and Famiglietti J. , 2007: Modeling large-scale inundation of Amazonian seasonally flooded wetlands. Geophys. Res. Lett., 34, L15404, doi:10.1029/2007GL030156.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., , Oki T. , , and Kanae S. , 2009: Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map. Hydrol. Earth Syst. Sci., 13, 22412251, doi:10.5194/hess-13-2241-2009.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., , Kanae S. , , Kim H. , , and Oki T. , 2011: A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res., 47, W04501, doi:10.1029/2010WR009726.

    • Search Google Scholar
    • Export Citation
  • Yamazaki, D., , Baugh C. A. , , Bates P. D. , , Kanae S. , , Alsdorf D. E. , , and Oki T. , 2012: Adjustment of a spaceborne DEM for use in floodplain hydrodynamic modeling. J. Hydrol., 436–437, 8191.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 197 197 46
PDF Downloads 167 167 44

The Hydrological Modeling and Analysis Platform (HyMAP): Evaluation in the Amazon Basin

View More View Less
  • 1 LEGOS/CNES-CNRS-IRD-UPS, and CNRM-GAME/Météo-France, Toulouse, France
  • | 2 CNRM-GAME/Météo-France, Toulouse, France
  • | 3 University of Tokyo, Tokyo, Japan
  • | 4 CNRM-GAME/Météo-France, Toulouse, France
  • | 5 LEGOS/CNES-CNRS-IRD-UPS, Toulouse, France
© Get Permissions
Restricted access

Abstract

Recent advances in global flow routing schemes have shown the importance of using high-resolution topography for representing floodplain inundation dynamics more reliably. This study presents and evaluates the Hydrological Modeling and Analysis Platform (HyMAP), which is a global flow routing scheme specifically designed to bridge the gap between current state-of-the-art global flow routing schemes by combining their main features and introducing new features to better capture floodplain dynamics. The ultimate goals of HyMAP are to provide the scientific community with a novel scheme suited to the assimilation of satellite altimetry data for global water discharge forecasts and a model that can be potentially coupled with atmospheric models. In this first model evaluation, HyMAP is coupled with the Interactions between Soil–Biosphere–Atmosphere (ISBA) land surface model in order to simulate the surface water dynamics in the Amazon basin. The model is evaluated over the 1986–2006 period against an unprecedented source of information, including in situ and satellite-based datasets of water discharge and level, flow velocity, and floodplain extent. Results show that the model can satisfactorily simulate the large-scale features of the water surface dynamics of the Amazon River basin. Among all stream gauges considered, 23% have Nash–Sutcliffe coefficients (NS) higher than 0.50 and 68% above zero. About 28% of the stations have volume errors lower than 15%. Simulated discharges at Óbidos had NS = 0.89. Time series of simulated floodplains at the basin scale agrees well with satellite-based estimates, with a relative error of 7% and correlation of 0.89. These results indicate nonnegligible improvements in comparison to previous studies for the same region.

Current affiliation: Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland.

Corresponding author address: Augusto Getirana, Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 22071. E-mail: augusto.getirana@nasa.gov

Abstract

Recent advances in global flow routing schemes have shown the importance of using high-resolution topography for representing floodplain inundation dynamics more reliably. This study presents and evaluates the Hydrological Modeling and Analysis Platform (HyMAP), which is a global flow routing scheme specifically designed to bridge the gap between current state-of-the-art global flow routing schemes by combining their main features and introducing new features to better capture floodplain dynamics. The ultimate goals of HyMAP are to provide the scientific community with a novel scheme suited to the assimilation of satellite altimetry data for global water discharge forecasts and a model that can be potentially coupled with atmospheric models. In this first model evaluation, HyMAP is coupled with the Interactions between Soil–Biosphere–Atmosphere (ISBA) land surface model in order to simulate the surface water dynamics in the Amazon basin. The model is evaluated over the 1986–2006 period against an unprecedented source of information, including in situ and satellite-based datasets of water discharge and level, flow velocity, and floodplain extent. Results show that the model can satisfactorily simulate the large-scale features of the water surface dynamics of the Amazon River basin. Among all stream gauges considered, 23% have Nash–Sutcliffe coefficients (NS) higher than 0.50 and 68% above zero. About 28% of the stations have volume errors lower than 15%. Simulated discharges at Óbidos had NS = 0.89. Time series of simulated floodplains at the basin scale agrees well with satellite-based estimates, with a relative error of 7% and correlation of 0.89. These results indicate nonnegligible improvements in comparison to previous studies for the same region.

Current affiliation: Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland.

Corresponding author address: Augusto Getirana, Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 22071. E-mail: augusto.getirana@nasa.gov
Save