• Adler, R. F., , Kidd C. , , Petty G. , , Morissey M. , , and Goodman H. M. , 2001: Intercomparison of global precipitation products: The third Precipitation Intercomparison Project (PIP-3). Bull. Amer. Meteor. Soc., 82, 13771396.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–present). J. Hydrometeor., 4, 11471167.

    • Search Google Scholar
    • Export Citation
  • Ailliot, P., , Baxevani A. , , Cuzol A. , , Monbet V. , , and Raillard N. , 2011: Space–time models for moving fields with an application to significant wave height fields. Environmetrics, 22, 354369.

    • Search Google Scholar
    • Export Citation
  • Ali, A., , Amani A. , , Diedhiou A. , , and Lebel T. , 2005: Rainfall estimation in the Sahel. Part II: Evaluation of rain gauge networks in the CILSS countries and objective intercomparison of rainfall products. J. Appl. Meteor., 44, 17071722.

    • Search Google Scholar
    • Export Citation
  • Andah, W. E. I., , and Gichuki F. , Eds., 2005: Volta River basin: Enhancing agricultural water productivity through strategic research. CGIAR Challenge Program on Water and Food Baseline Rep. 8, 59 pp.

  • Arkin, P. A., , and Meisner B. N. , 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115, 5174.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., , Joyce R. , , and Janowiak J. E. , 1994: The estimation of global monthly mean rainfall using infrared satellite data: The GOES precipitation index (GPI). Remote Sens. Rev., 11, 107124.

    • Search Google Scholar
    • Export Citation
  • Artan, G., , Gadain H. , , Smith J. L. , , Asante K. , , Bandaragoda C. J. , , and Verdin J. P. , 2007: Adequacy of satellite derived rainfall data for stream flow modeling. Nat. Hazards, 43, 167185.

    • Search Google Scholar
    • Export Citation
  • Asadullah, A., , McIntyre N. , , and Kigobe M. , 2008: Evaluation of five satellite products for estimation of rainfall over Uganda. Hydrol. Sci. J., 53, 11371150.

    • Search Google Scholar
    • Export Citation
  • Behrangi, A., , Khakbaz B. , , Jaw T. C. , , AghaKouchak A. , , Hsu K. , , and Sorooshian S. , 2011: Hydrologic evaluation of satellite precipitation products over a mid-size basin. J. Hydrol., 397, 225237.

    • Search Google Scholar
    • Export Citation
  • Bitew, M. M., , and Gebremichael M. , 2011: Assessment of high-resolution satellite rainfall for streamflow simulation in medium watersheds of the East African highlands. Hydrol. Earth Syst. Sci. Discuss., 7, 82138232.

    • Search Google Scholar
    • Export Citation
  • Brown, J. E. M., 2006: An analysis of the performance of hybrid infrared and microwave satellite precipitation algorithms over India and adjacent regions. Remote Sens. Environ., 101, 6381.

    • Search Google Scholar
    • Export Citation
  • Burrough, P. A., , and McDonnell R. A. , 1998: Principles of Geographical Information Systems. Oxford University Press, 333 pp.

  • Cattani, E., , Torricella F. , , Laviola S. , , and Levizzani V. , 2009: On the statistical relationship between cloud optical and microphysical characteristics and rainfall intensity for convective storms over the Mediterranean. Nat. Hazards Earth Syst. Sci., 9, 21352142.

    • Search Google Scholar
    • Export Citation
  • Cohen Liechti, T., , Matos J. P. , , Boillat J. L. , , and Schleiss A. J. , 2011: Comparison and evaluation of satellite derived precipitation products for hydrological modeling of the Zambezi River Basin. Hydrol. Earth Syst. Sci. Discuss., 8, 81738201.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., , Ceccato P. , , Grover-Kopec E. , , Lemma M. , , Connor S. J. , , and Ropelewski C. F. , 2007: Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens., 28, 15031526.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., , Ceccato P. , , Cressman K. , , and Connor S. J. , 2010a: Evaluating detection skills of satellite rainfall estimates over desert locust recession regions. J. Appl. Meteor. Climatol., 49, 13221332.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., , Ruiz F. , , Connor S. J. , , and Ceccato P. , 2010b: Validation and intercomparison of satellite rainfall estimates over Colombia. J. Appl. Meteor. Climatol., 49, 10041014.

    • Search Google Scholar
    • Export Citation
  • Diro, G. T., , Grimes D. I. F. , , Black E. , , O’Neill A. , , and Pardo-Iguzquiza E. , 2009: Evaluation of reanalysis rainfall estimates over Ethiopia. Int. J. Climatol., 29, 6778.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , Manton M. J. , , Arkin P. A. , , Allam R. J. , , Holpin G. E. , , and Gruber A. , 1996: Results from the GPCP Algorithm Intercomparison Programme. Bull. Amer. Meteor. Soc., 77, 28752887.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , Janowiak J. E. , , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764.

    • Search Google Scholar
    • Export Citation
  • Goovaerts, P., 1997: Geostatistics for Natural Resources Evaluation. Oxford University Press, 483 pp.

  • Goovaerts, P., 2000: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol., 228, 113129.

    • Search Google Scholar
    • Export Citation
  • Grimes, D. I. F., , and Diop M. , 2003: Satellite-based rainfall estimation for river flow forecasting in Africa. I: Rainfall estimates and hydrological forecasts. Hydrol. Sci. J., 48, 567584.

    • Search Google Scholar
    • Export Citation
  • Herman, A., , Kumar V. B. , , Arkin P. A. , , and Kousky J. V. , 1997: Objectively determined 10-day African rainfall estimates created for famine early warning systems. Int. J. Remote Sens., 18, 21472159.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., , Hsu K. L. , , Sorooshian S. , , and Gao X. , 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43, 18341852.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., , Hsu K. L. , , Moradkhani H. , , and Sorooshian S. , 2006: Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour. Res., 42, W08421, doi:10.1029/2005WR004398.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., , and Anagnostou E. N. , 2006: Assessment of a multidimensional satellite rainfall error model for ensemble generation of satellite rainfall data. IEEE Geosci. Remote Sens. Lett., 3, 419423.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., , Anagnostou E. N. , , and Dinku T. , 2004: Sensitivity analyses of satellite rainfall retrieval and sampling error on flood prediction uncertainty. IEEE Trans. Geosci. Remote Sens., 42, 130139.

    • Search Google Scholar
    • Export Citation
  • Hsu, K. L., , Gao X. , , Sorooshian S. , , and Gupta H. V. , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , Adler R. F. , , Bolvin D. T. , , and Nelkin E. , 2010: The TRMM Multi-Satellite Precipitation Analysis. Satellite Rainfall Applications for Surface Hydrology, F. Hossian and M. Gebremichael, Eds., Springer, 3–22.

  • Hughes, D. A., 2006: Comparison of satellite rainfall data with observations from gauging station networks. J. Hydrol., 327, 399410.

  • Isaaks, E. H., , and Srivastava R. M. , 1989: An Introduction to Applied Geostatistics. Oxford University Press, 561 pp.

  • Jobard, I., , Chopin F. , , Berges J. C. , , and Roca R. , 2011: An intercomparison of 10-day satellite precipitation products during West African monsoon. Int. J. Remote Sens., 32, 23532376.

    • Search Google Scholar
    • Export Citation
  • Journel, A. G., , and Huijbregts C. J. , 1978: Mining Geostatistics. Academic Press, 600 pp.

  • Joyce, R. J., , Janowiak J. E. , , Arkin P. A. , , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., , Levizzani V. , , Turk J. , , and Ferraro R. , 2009: Satellite precipitation measurements for water resource monitoring. J. Amer. Water Resour. Assoc., 45, 567579.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820.

    • Search Google Scholar
    • Export Citation
  • Laurent, H., , Jobard I. , , and Toma A. , 1998: Validation of satellite and ground-based estimates of precipitation over the Sahel. Atmos. Res., 47–48, 651670.

    • Search Google Scholar
    • Export Citation
  • Ly, S., , Charles C. , , and Degré A. , 2011: Geostatistical interpolation of daily rainfall at catchment scale: The use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrol. Earth Syst. Sci., 15, 22592274.

    • Search Google Scholar
    • Export Citation
  • Maidment, R., , Tarnavsky E. , , Grimes D. , , and Allan R. , 2010: TARCAT-TAMSAT African rainfall climatology and time series. Fifth IPWG Workshop on Precipitation Measurements, IPWG, Hamburg, Germany. [Available online at http://www.isac.cnr.it/~ipwg/meetings/hamburg-2010/posters/Maidment.pdf.]

  • McCollum, J. R., , Gruber A. , , and Ba M. B. , 2000: Discrepancy between gauges and satellite estimates of rainfall in equatorial Africa. J. Appl. Meteor., 39, 666679.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models. Part I: A discussion of principles. J. Hydrol, 10, 282290.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , Gochis D. J. , , and Lang T. J. , 2008: The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain. J. Hydrometeor., 9, 728743.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and Coauthors, 2003: Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part I: Validation of GPCC rainfall product and pre-TRMM satellite and blended products. J. Appl. Meteor., 42, 13371354.

    • Search Google Scholar
    • Export Citation
  • Olson, W. S., , Yang S. , , Stout J. E. , , and Grecu M. , 2007: The Goddard Profiling Algorithm (GPROF): Description and current applications. Measuring Precipitation from Space, V. Levizzani, P. Bauer, and F. J. Turk, Eds., Springer-Verlag, 179–188.

  • Pebesma, E. J., , and Wesseling C. G. , 1998: Gstat: A program for geostatistical modelling, prediction and simulation. Comput. Geosci., 24, 1731.

    • Search Google Scholar
    • Export Citation
  • Romilly, T. G., , and Gebremichael M. , 2011: Evaluation of satellite rainfall estimates over Ethiopian river basins. Hydrol. Earth Syst. Sci., 15, 15051514.

    • Search Google Scholar
    • Export Citation
  • Shahin, D. M., 2002: Hydrology and Water Resources of Africa. Water Science and Technology Library, Vol. 41, Kluwer Academic Publishers, 686 pp.

  • Smith, E. A., and Coauthors, 1998: Results of WetNet PIP-2 project. J. Atmos. Sci., 55, 14831536.

  • Smith, T. M., , Arkin P. A. , , Bates J. J. , , and Huffman G. J. , 2006: Estimating bias of satellite-based precipitation estimates. J. Hydrometeor., 7, 841856.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., , Hsu K. L. , , Gao X. , , Gupta H. V. , , Imam B. , , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046.

    • Search Google Scholar
    • Export Citation
  • Stisen, S., , and Sandholt I. , 2010: Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modelling. Hydrol. Processes, 24, 879891.

    • Search Google Scholar
    • Export Citation
  • Symeonakis, E., , Bonifaçio R. , , and Drake N. , 2009: A comparison of rainfall estimation techniques for sub-Saharan Africa. Int. J. Appl. Earth Obs. Geoinf., 11, 1526.

    • Search Google Scholar
    • Export Citation
  • The NOAA Climate Prediction Center, cited 2002: African rainfall estimation algorithm version 2.0. [Available online from http://www.cpc.ncep.noaa.gov/products/fews/RFE2.0_tech.pdf.]

  • Thorne, V., , Coakeley P. , , Grimes D. , , and Dugdale G. , 2001: Comparison of TAMSAT and CPC rainfall estimates with raingauges, for southern Africa. Int. J. Remote Sens., 22, 19511974.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., , Peters-Lidard C. D. , , and Eylander J. B. , 2010: Real-time bias reduction for satellite-based precipitation estimates. J. Hydrometeor., 11, 12751285.

    • Search Google Scholar
    • Export Citation
  • Ushio, T., , and Kachi M. , 2010: Kalman filtering applications for Global Satellite Mapping of Precipitation (GSMaP). Satellite Rainfall Applications for Surface Hydrology, F. Hossian and M. Gebremichael, Eds., Springer Publishing Company, 105–123.

  • Ushio, T., and Coauthors, 2009: A Kalman filter approach to the global satellite mapping of precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan,87A, 137–151.

  • Xie, P., , and Arkin P. A. , 1995: An intercomparison of gauge observations and satellite estimates of monthly precipitation. J. Appl. Meteor., 34, 11431160.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and Arkin P. A. , 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840858.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , Yoo S.-H. , , Joyce R. , , and Yarosh Y. , 2011: Bias-corrected CMORPH: A 13-year analysis of high-resolution global precipitation. Geophysical Research Abstracts, Vol. 13, Abstract EGU2011-1809. [Available online at http://meetingorganizer.copernicus.org/EGU2011/EGU2011-1809.pdf.]

  • Yapo, P. O., , Gupta H. V. , , and Sorooshian S. , 1996: Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data. J. Hydrol., 181, 2348.

    • Search Google Scholar
    • Export Citation
  • Yilmaz, K. K., , Hogue T. S. , , Hsu K. L. , , Sorooshian S. , , Gupta H. V. , , and Wagener T. , 2005: Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting. J. Hydrometeor., 6, 497517.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 238 238 54
PDF Downloads 212 212 49

Validation of Satellite-Based Precipitation Products over Sparsely Gauged African River Basins

View More View Less
  • 1 Water Resources Unit, Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy, and Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
  • | 2 Climate Risk Management Unit, Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy
  • | 3 Water Resources Unit, Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy
  • | 4 National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Bologna, Italy
  • | 5 Water Resources Unit, Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy, and Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
© Get Permissions
Restricted access

Abstract

Six satellite-based rainfall estimates (SRFE)—namely, Climate Prediction Center (CPC) morphing technique (CMORPH), the Rainfall Estimation Algorithm, version 2 (RFE2.0), Tropical Rainfall Measuring Mission (TRMM) 3B42, Goddard profiling algorithm, version 6 (GPROF 6.0), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), Global Satellite Mapping of Precipitation moving vector with Kalman filter (GSMap MVK), and one reanalysis product [the interim ECMWF Re-Analysis (ERA-Interim)]—were validated against 205 rain gauge stations over four African river basins (Zambezi, Volta, Juba–Shabelle, and Baro–Akobo). Validation focused on rainfall characteristics relevant to hydrological applications, such as annual catchment totals, spatial distribution patterns, seasonality, number of rainy days per year, and timing and volume of heavy rainfall events. Validation was done at three spatially aggregated levels: point-to-pixel, subcatchment, and river basin for the period 2003–06. Performance of satellite-based rainfall estimation (SRFE) was assessed using standard statistical methods and visual inspection. SRFE showed 1) accuracy in reproducing precipitation on a monthly basis during the dry season, 2) an ability to replicate bimodal precipitation patterns, 3) superior performance over the tropical wet and dry zone than over semiarid or mountainous regions, 4) increasing uncertainty in the estimation of higher-end percentiles of daily precipitation, 5) low accuracy in detecting heavy rainfall events over semiarid areas, 6) general underestimation of heavy rainfall events, and 7) overestimation of number of rainy days in the tropics. In respect to SRFE performance, GPROF 6.0 and GSMaP-MKV were the least accurate, and RFE 2.0 and TRMM 3B42 were the most accurate. These results allow discrimination between the available products and the reduction of potential errors caused by selecting a product that is not suitable for particular morphoclimatic conditions. For hydrometeorological applications, results support the use of a performance-based merged product that combines the strength of multiple SRFEs.

Corresponding author address: Vera Thiemig, Via E. Fermi 2749, TP 261, 21027 Ispra (VA), Italy. E-mail: vera.thiemig@jrc.ec.europa.eu

Abstract

Six satellite-based rainfall estimates (SRFE)—namely, Climate Prediction Center (CPC) morphing technique (CMORPH), the Rainfall Estimation Algorithm, version 2 (RFE2.0), Tropical Rainfall Measuring Mission (TRMM) 3B42, Goddard profiling algorithm, version 6 (GPROF 6.0), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), Global Satellite Mapping of Precipitation moving vector with Kalman filter (GSMap MVK), and one reanalysis product [the interim ECMWF Re-Analysis (ERA-Interim)]—were validated against 205 rain gauge stations over four African river basins (Zambezi, Volta, Juba–Shabelle, and Baro–Akobo). Validation focused on rainfall characteristics relevant to hydrological applications, such as annual catchment totals, spatial distribution patterns, seasonality, number of rainy days per year, and timing and volume of heavy rainfall events. Validation was done at three spatially aggregated levels: point-to-pixel, subcatchment, and river basin for the period 2003–06. Performance of satellite-based rainfall estimation (SRFE) was assessed using standard statistical methods and visual inspection. SRFE showed 1) accuracy in reproducing precipitation on a monthly basis during the dry season, 2) an ability to replicate bimodal precipitation patterns, 3) superior performance over the tropical wet and dry zone than over semiarid or mountainous regions, 4) increasing uncertainty in the estimation of higher-end percentiles of daily precipitation, 5) low accuracy in detecting heavy rainfall events over semiarid areas, 6) general underestimation of heavy rainfall events, and 7) overestimation of number of rainy days in the tropics. In respect to SRFE performance, GPROF 6.0 and GSMaP-MKV were the least accurate, and RFE 2.0 and TRMM 3B42 were the most accurate. These results allow discrimination between the available products and the reduction of potential errors caused by selecting a product that is not suitable for particular morphoclimatic conditions. For hydrometeorological applications, results support the use of a performance-based merged product that combines the strength of multiple SRFEs.

Corresponding author address: Vera Thiemig, Via E. Fermi 2749, TP 261, 21027 Ispra (VA), Italy. E-mail: vera.thiemig@jrc.ec.europa.eu
Save