Spatial-Scale Characteristics of Precipitation Simulated by Regional Climate Models and the Implications for Hydrological Modeling

S. H. Rasmussen Danish Meteorological Institute, Copenhagen, Denmark

Search for other papers by S. H. Rasmussen in
Current site
Google Scholar
PubMed
Close
,
J. H. Christensen Danish Meteorological Institute, Copenhagen, Denmark

Search for other papers by J. H. Christensen in
Current site
Google Scholar
PubMed
Close
,
M. Drews Danish Meteorological Institute, Copenhagen, Denmark

Search for other papers by M. Drews in
Current site
Google Scholar
PubMed
Close
,
D. J. Gochis National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by D. J. Gochis in
Current site
Google Scholar
PubMed
Close
, and
J. C. Refsgaard Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark

Search for other papers by J. C. Refsgaard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Precipitation simulated by regional climate models (RCMs) is generally biased with respect to observations, especially at the local scale of a few tens of kilometers. This study investigates how well two different RCMs are able to reproduce the spatial correlation patterns of observed summer precipitation for the central United States. On local scales, gridded precipitation observations and simulated precipitation are compared for the period of the 1987 First International Satellite Land Surface Climatological Project Field Experiment (FIFE) campaign. The results show that spatial correlation length scales on the order of 130 km are found in both observed data and RCM simulations. When simulations and observations are aggregated to different grid sizes, the pattern correlation significantly decreases when the aggregation length is less than roughly 100 km. Furthermore, the intermodel standard deviation between simulations with different domains or resolutions increases for aggregation lengths below ~130 km. Below this length scale there is a high level of randomness in the precise location of precipitation events. Conversely, spatial correlation values increase above this length scale, reflecting larger predictive certainty of the RCMs at larger scales. The findings on aggregated grid scales are shown to be largely independent of the underlying RCMs grid resolutions but not of the overall size of RCM domain. With regard to hydrological modeling applications, these findings indicate that precipitation extracted from the present RCM simulations at a catchment scale below the intermodel standard deviation length cannot be expected to accurately match observations.

Current affiliation: DTU Climate Centre, Roskilde, Denmark.

Corresponding author address: S. H. Rasmussen, Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen, Denmark. E-mail: sohr@dmi.dk

Abstract

Precipitation simulated by regional climate models (RCMs) is generally biased with respect to observations, especially at the local scale of a few tens of kilometers. This study investigates how well two different RCMs are able to reproduce the spatial correlation patterns of observed summer precipitation for the central United States. On local scales, gridded precipitation observations and simulated precipitation are compared for the period of the 1987 First International Satellite Land Surface Climatological Project Field Experiment (FIFE) campaign. The results show that spatial correlation length scales on the order of 130 km are found in both observed data and RCM simulations. When simulations and observations are aggregated to different grid sizes, the pattern correlation significantly decreases when the aggregation length is less than roughly 100 km. Furthermore, the intermodel standard deviation between simulations with different domains or resolutions increases for aggregation lengths below ~130 km. Below this length scale there is a high level of randomness in the precise location of precipitation events. Conversely, spatial correlation values increase above this length scale, reflecting larger predictive certainty of the RCMs at larger scales. The findings on aggregated grid scales are shown to be largely independent of the underlying RCMs grid resolutions but not of the overall size of RCM domain. With regard to hydrological modeling applications, these findings indicate that precipitation extracted from the present RCM simulations at a catchment scale below the intermodel standard deviation length cannot be expected to accurately match observations.

Current affiliation: DTU Climate Centre, Roskilde, Denmark.

Corresponding author address: S. H. Rasmussen, Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen, Denmark. E-mail: sohr@dmi.dk
Save
  • Abbott, M. B., Bathust J. C. , Cunge J. A. , O’Connell P. E. , and Rasmussen J. , 1986: An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”. 1: History and philosophy of a physically-based, distributed modelling system. J. Hydrol., 87, 6177.

    • Search Google Scholar
    • Export Citation
  • Andrésson, J., Bergström S. , Carlsson B. , Graham L. P. , and Lindström G. , 2004: Hydrological change: Climate change impact simulations for Sweden. Ambio, 33 (4–5), 228234.

    • Search Google Scholar
    • Export Citation
  • Anyah, R. O., Weaver C. P. , Miguez-Macho G. , Fan Y. , and Robock A. , 2008: Incorporating water table dynamics in climate modelling: 3. Simulated groundwater influence on coupled land-atmosphere variability. J. Geophys. Res., 113, D07103, doi:10.1029/2007JD009087.

    • Search Google Scholar
    • Export Citation
  • Bell, V. A., and Moore R. J. , 2000: The sensitivity of catchment runoff models to rainfall data at different spatial scales. Hydrol. Earth Syst. Sci., 4, 653667.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., cited 1994: Site averaged AMS data: 1987 (BETTS). [Available online at http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=88.]

  • Betts, A. K., and Ball J. H. , 1998: FIFE surface climate and site-average dataset 1987–89. J. Atmos. Sci., 55, 10911108.

  • Carlson, T. N., and Boland F. E. , 1978: Analysis of urban-rural canopy using a surface heat flux/temperature model. J. Appl. Meteor., 17, 9981013.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2007: Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J. Appl. Meteor. Climatol., 46, 694713.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and van Meijgaard E. , 1992: On the construction of a regional atmospheric climate model. DMI Tech. Rep. 92-14, 22 pp. [Available from DMI, Lyngbyvej 100, 2100 Copenhagen Ø, Denmark.]

  • Christensen, J. H., and Christensen O. B. , 2007: A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81, 730.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., Christensen O. B. , Lopez P. , van Meijgaard E. , and Botzet M. , 1996: The HIRHAM4 Regional Atmospheric Climate Model. DMI Scientific Rep. 96-4, 55 pp. [Available from DMI, Lyngbyvej 100, 2100 Copenhagen Ø, Denmark.]

  • Christensen, J. H., Carter T. R. , Rummukainen M. , and Amanatidis G. , 2007: Evaluating the performance and utility of regional climate models: The PRUDENCE project. Climatic Change, 81 (Suppl.), 16.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., Boberg F. , Christensen O. B. , and Lucas-Picher P. , 2008: On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett., 35, L20709, doi:10.1029/2008GL035694.

    • Search Google Scholar
    • Export Citation
  • Christensen, O. B., 1999: Relaxation of soil variables in a regional climate model. Tellus, 51A, 674685.

  • Christensen, O. B., Drews M. , Christensen J. H. , Dethloff K. , Ketelsen K. , Hebestadt I. , and Rinke A. , 2006: The HIRHAM regional climate model, version 5. DMI Tech. Rep. 06-17, 22 pp. [Available from DMI, Lyngbyvej 100, 2100 Copenhagen Ø, Denmark.]

  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Taylor G. H. , and Gibson W. P. , 1997: The PRISM approach to mapping precipitation and temperature. Preprints, 10th Conf. on Applied Climatology, Reno, NV, Amer. Meteor. Soc., 10–12.

  • Eerola, K., 2006: About the performance of HIRLAM version 7.0. HIRLAM Newsletter, No. 51, KNMI, De Bilt, Netherlands, 93–102. [Available online at http://www.hirlam.org/publications/NewsLetters/51/NL51_Article14_Eerola_Performance_Hirlam7_0.pdf.]

  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., Blenkinsop S. , and Tebaldi C. , 2007: Linking climate change modelling to impact studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., Kane R. J. , and Chelius C. R. , 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 13331345.

    • Search Google Scholar
    • Export Citation
  • Fu, S., Sonnenborg T. O. , Jensen K. H. , and He X. , 2011: Impact of precipitation spatial resolution on the hydrological response of an integrated distributed water resources model. Vadose Zone J., 10, 2536.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., Shuttleworth W. J. , and Yang Z.-L. , 2003: Hydrometeorological response of the modeled North American monsoon to convective parameterization. J. Hydrometeor., 4, 235250.

    • Search Google Scholar
    • Export Citation
  • Graham, L. P., Andréasson J. , and Carlsson B. , 2007: Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scale and linking methods—A case study on the Lule River basin. Climatic Change, 81, 293307.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and Devenyi D. , 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • He, X., Vejen F. , Stisen S. , Sonnenborg T. O. , and Jensen K. H. , 2011: An operational weather radar–based quantitative precipitation estimation and its application in catchment water resources modeling. Vadose Zone J., 10, 824.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 8395.

  • Ikeda, K., and Coauthors, 2010: Simulation of seasonal snowfall over Colorado. Atmos. Res., 97, 462477.

  • Jacob, D., and Coauthors, 2007: An inter-comparison of regional climate models for Europe: Model performance in present-day climate. Climatic Change, 81, 3152.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., Niu G. , and Yang Z.-L. , 2009: Impacts of vegetation and groundwater dynamics on warm season precipitation over the Central United States. J. Geophys. Res., 114, D06109, doi:10.1029/2008JD010756.

    • Search Google Scholar
    • Export Citation
  • Kjellström, E., Boberg F. , Castro M. , Christensen J. H. , Nikulin G. , and Sánchez E. , 2010: Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Climate Res., 44 (2–3), 135150.

    • Search Google Scholar
    • Export Citation
  • Koren, V. I., Finnerty B. D. , Schaake J. C. , Smith M. B. , Seo D.-J. , and Duan Q.-Y. , 1999: Scale dependencies of hydrologic models to spatial variability of precipitation. J. Hydrol., 217, 285302.

    • Search Google Scholar
    • Export Citation
  • Leduc, M., and Laprise R. , 2009: Regional climate model sensitivity to domain size. Climate Dyn., 32, 833854.

  • Leduc, M., Laprise R. , Moretti-Poisson M. , and Morin J.-P. , 2011: Sensitivity to domain size of mid-latitude summer simulation with a regional climate model. Climate Dyn., 37, 343356.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and Willmott C. J. , 1990: Mean seasonal and spatial variability global surface air temperature. Theor. Appl. Climatol., 41, 1121.

    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., Wood A. W. , Palmer R. N. , Wood E. F. , and Stakhiv E. Z. , 1999: Water resources implications of global warming: A U.S. regional perspective. Climatic Change, 43, 537579.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and Roeckner E. , 1996: Design and performance of a new cloud microphysics scheme developed for the ECHAM4 general circulation model. Climate Dyn., 12, 557572.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963a: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141.

  • Lorenz, E. N., 1963b: The predictability of hydrodynamic flow. Trans. N. Y. Acad. Sci., Ser. II, 25, 409432.

  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., Wood A. W. , Adam J. C. , Lettenmaier D. P. , and Nijssen B. , 2002: A long-term hydrologically based data set of land surface fluxes and states for the conterminous United States. J. Climate, 15, 32373251.

    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., Chow F. K. , and Kollet S. J. , 2007: The groundwater–land-surface–atmosphere connection: Soil moisture effects on atmospheric boundary layer in fully-coupled simulations. Adv. Water Resour., 30, 24472466.

    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., Lundquist J. K. , Mirocha J. , Smith S. G. , Woodward C. S. , and Tompson A. F. B. , 2011: Development of a coupled groundwater–atmosphere model. Mon. Wea. Rev., 139, 96116.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., Gutowski W. J. , Jones R. , Leung L.-Y. , McGinnis S. , Nunes A. M. B. , and Qian Y. , 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90 (36), 311312.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2012: The North American Regional Climate Change Assessment Program: Overview of phase I results. Bull. Amer. Meteor. Soc., 93, 13371362.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., Stenchikov G. L. , and Robock A. , 2004: Spectral nudging to eliminate the effects of domain location and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, doi:10.1029/2003JD004495.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., Stenchikov G. L. , and Robock A. , 2005: Regional climate simulation over North America: Interactions of local processes with improved large-scale flow. J. Climate, 18, 12271246.

    • Search Google Scholar
    • Export Citation
  • Miguez-Macho, G., Fan Y. , Weaver C. P. , Walko R. , and Robock A. , 2007: Incorporating water table dynamics in climate modeling: 2. Formulation, validation, and soil moisture simulation. J. Geophys. Res., 112, D13108, doi:10.1029/2006JD008112.

    • Search Google Scholar
    • Export Citation
  • Miller, M. J., Palmer T. N. , and Swinbank R. , 1989: Parameterization and influence of subgridscale orography in general circulation and numerical weather prediction models. Meteor. Atmos. Phys., 40, 84109.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., Carter T. R. , Jones P. D. , Hulme M. , and New M. , 2004: A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901-2000) and 16 scenarios (2001-2100). Tyndall Centre for Climate Change Research Working Paper 55, 25 pp.

  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and Obukhov A. M. , 1954: Basic laws of turbulent mixing in surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geofiz. Inst., 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., 1989: Description of the radiative scheme in ECMWF model. ECMWF Tech. Memo. 165, 26 pp.

  • Moulin, L., Gaume E. , and Obled C. , 2009: Uncertainties on mean areal precipitation: Assessment and impact on streamflow simulations. Hydrol. Earth Syst. Sci., 13, 99114.

    • Search Google Scholar
    • Export Citation
  • New, M., Hulme M. , and Joens P. D. , 2000: Representing twentieth century space–time climate variability. Part 2: Development of 1901–96 monthly grids of terrestrial surface climate. J. Climate, 13, 22172238.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1994: Extended version of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Tech. Memo. 206, 41 pp.

  • Obled, C., Wending J. , and Beven K. , 1994: The sensitivity of hydrological models to spatial rainfall patterns: An evaluation using observed data. J. Hydrol., 159, 305333.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., Shutts G. J. , and Swinbank R. , 1986: Alleviation of systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 10011039.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., Vose R. , Schmoyer R. , and Vyachevslav R. , 1998: Global historical climatology network (GHCN) quality control of monthly temperature data. Int. J. Climatol., 18, 11691179.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., Barker H. W. , and Morcrette J.-J. , 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous clouds. J. Geophys. Res., 108, 4376, doi:10.1029/2002JD003322.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048.

    • Search Google Scholar
    • Export Citation
  • Research Systems, Inc., cited 2007: Curvefit, IDL reference guide: IDL 6.4 online help. [Available online at http://idlastro.gsfc.nasa.gov/idl_html_help/CURVEFIT.html.]

  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part 1: Model description. Max-Planck-Institut für Meteorologie Rep. 349, 127 pp.

  • Rojas, M., 2006: Multiply nested regional climate simulation for southern South America: Sensitivity to model resolution. Mon. Wea. Rev., 134, 22082223.

    • Search Google Scholar
    • Export Citation
  • Rudolf, B., and Schneider U. , 2005: Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations. Proc. Second Workshop of the Int. Precipitation Working Group, Monterey, CA, EUMETSAT, 231–247.

  • Salzmann, N., and Mearns L. O. , 2012: Assessing the performance of multiple regional climate model simulations for seasonal mountain snow in the upper Colorado River basin. J. Hydrometeor., 13, 539556.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Hall F. G. , Asrar G. , Strebel D. E. , and Murphy R. E. , 1992: An overview of the first International Satellite Land-Surface Climatology Project (ISLSCP) Field Experiment (FIFE). J. Geophys. Res., 97 (D17), 18 34518 371.

    • Search Google Scholar
    • Export Citation
  • Seuffert, G., Gross P. , and Simmer C. , 2002: The influence of hydrologic modelling on the predicted local weather: Two-way coupling of a mesoscale weather prediction model and a land surface hydrological model. J. Hydrometeor., 3, 505523.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.

  • Sobolowski, S., and Pavelsky T. , 2012: Evaluation of present and future North American Regional Climate Change Assessment Program (NARCCAP) regional climate simulations over the southeast United States. J. Geophys. Res., 117, D01101, doi:10.1029/2011JD016430.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1978: A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104, 677690.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Field P. R. , Rasmussen R. M. , and Hall W. D. , 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci., 59, 19171942.

    • Search Google Scholar
    • Export Citation
  • Undén, P., and Coauthors, 2002: HIRLAM-5 scientific documentation. Swedish Meteorological and Hydrological Institute Scientific Rep., 144 pp. [Available online at http://hirlam.org/index.php?option=com_docman&task=doc_download&gid=270&Itemid=70.]

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012.

  • van de Beek, C. Z., Leijnse H. , Torfs P. J. J. F. , and Uijlenhoet R. , 2011: Climatology of daily rainfall semi-variance in the Netherlands. Hydrol. Earth Syst. Sci., 15, 171183.

    • Search Google Scholar
    • Export Citation
  • van der Linden, P., and Mitchell J. F. B. , Eds., 2009: ENSEMBLES: Climate Change and Its Impacts: Summary of Research and Results from the ENSEMBLES Project. Met Office Hadley Centre, 160 pp.

  • van Roosmalen, L., Christensen B. S. B. , and Sonnenborg T. O. , 2007: Regional differences in climate change impacts on groundwater and stream discharge in Denmark. Vadose Zone J., 6, 554571.

    • Search Google Scholar
    • Export Citation
  • van Roosmalen, L., Christensen J. H. , Butts M. , Jensen K. H. , and Refsgaard J. C. , 2010: Quantifying climate change signals for Denmark and assessing the robustness for hydrological impact studies. J. Hydrol., 380 (3–4), 406419.

    • Search Google Scholar
    • Export Citation
  • van Roosmalen, L., Sonnenborg T. O. , Jensen K. H. , and Christensen J. H. , 2011: Comparison of hydrological simulations of climate change using perturbation of observations and distributed-based scaling. Vadose Zone J., 10, 136150.

    • Search Google Scholar
    • Export Citation
  • Vischel, T., and Lebel T. , 2007: Assessing the water balance in the Sahel: Impact of small scale rainfall variability on runoff. Part 2: Idealized modelling of runoff sensitivity. J. Hydrol., 333, 340355.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., Langenberg H. , and Feser F. , 2000: A spectral nudging technique for dynamical downscaling purpose. Mon. Wea. Rev., 128, 36643673.

    • Search Google Scholar
    • Export Citation
  • Waldron, K. M., Paegle J. , and Horel J. D. , 1996: Sensitivity of a spectrally filtered and nudged limited area model to outer model options. Mon. Wea. Rev., 124, 529547.

    • Search Google Scholar
    • Export Citation
  • Walko, R. L., and Coauthors, 2000: Coupled atmosphere–biophysics–hydrology models for environmental modeling. J. Appl. Meteor., 39, 931944.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., Gillies R. R. , Takle E. S. , and Gutowski W. J. Jr., 2009: Evaluation of precipitation in the Intermountain Region as simulated by the NARCCAP regional climate models. Geophys. Res. Lett., 36, L11704, doi:10.1029/2009GL037930.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., 2011: Numerical Weather and Climate Prediction. Cambridge University Press, 548 pp.

  • Willmott, C. J., and Matsuura K. , 1995: Smart interpolation of annually averaged air temperature in United States. J. Appl. Meteor., 34, 25772586.

    • Search Google Scholar
    • Export Citation
  • York, J. P., Person M. , Gutowski W. J. , and Winter T. C. , 2002: Putting aquifers into atmospheric simulation models: An example from the Mill Creek Watershed, northeastern Kansas. Adv. Water Resour., 25, 221238.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., Xie X. , Zheng J. , Tian X. , and Yang Z. , 2008: Effects of water table dynamics on regional climate: A case study over east Asian monsoon area. J. Geophys. Res., 113, D21112, doi:10.1029/2008JD010180.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1809 1184 61
PDF Downloads 261 34 2