Snow–Atmosphere Coupling Strength. Part I: Effect of Model Biases

Li Xu Department of Atmospheric, Oceanic and Earth Science, George Mason University, Fairfax, Virginia

Search for other papers by Li Xu in
Current site
Google Scholar
PubMed
Close
and
Paul Dirmeyer Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Search for other papers by Paul Dirmeyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Snow–atmosphere coupling strength, the degree to which the atmosphere (temperature and precipitation) responds to underlying snow anomalies, is investigated using the Community Climate System Model (CCSM) with realistic snow information obtained from satellite and data assimilation. The coupling strength is quantified using seasonal simulations initialized in late boreal winter with realistic initial snow states or forced with realistic large-scale snow anomalies, including both snow cover fraction observed by remote sensing and snow water equivalent from land data assimilation. Errors due to deficiencies in the land model snow scheme and precipitation biases in the atmospheric model are mitigated by prescribing realistic snow states. The spatial and temporal distributions of strong snow–atmosphere coupling in this model are revealed to track the continental snow cover edge poleward during the ablation period in spring, with secondary maxima after snowmelt. Compared with prescribed “perfect” snow simulations, the free-running CCSM captures major regions of strong snow–atmosphere coupling strength, with only minor departures in magnitude, but showing uneven biases over the Northern Hemisphere. Signals of strong coupling to air temperature are found to propagate vertically into the troposphere, at least up to 500 hPa over the coupling “cold spots.” The main mechanism for this vertical propagation is found to be longwave radiation and condensation heating.

Current affiliation: Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland.

Corresponding author address: Li Xu, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Rd., Ste. 302, Calverton, MD 20705. E-mail: lixu@cola.iges.org

Abstract

Snow–atmosphere coupling strength, the degree to which the atmosphere (temperature and precipitation) responds to underlying snow anomalies, is investigated using the Community Climate System Model (CCSM) with realistic snow information obtained from satellite and data assimilation. The coupling strength is quantified using seasonal simulations initialized in late boreal winter with realistic initial snow states or forced with realistic large-scale snow anomalies, including both snow cover fraction observed by remote sensing and snow water equivalent from land data assimilation. Errors due to deficiencies in the land model snow scheme and precipitation biases in the atmospheric model are mitigated by prescribing realistic snow states. The spatial and temporal distributions of strong snow–atmosphere coupling in this model are revealed to track the continental snow cover edge poleward during the ablation period in spring, with secondary maxima after snowmelt. Compared with prescribed “perfect” snow simulations, the free-running CCSM captures major regions of strong snow–atmosphere coupling strength, with only minor departures in magnitude, but showing uneven biases over the Northern Hemisphere. Signals of strong coupling to air temperature are found to propagate vertically into the troposphere, at least up to 500 hPa over the coupling “cold spots.” The main mechanism for this vertical propagation is found to be longwave radiation and condensation heating.

Current affiliation: Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland.

Corresponding author address: Li Xu, Center for Ocean–Land–Atmosphere Studies, 4041 Powder Mill Rd., Ste. 302, Calverton, MD 20705. E-mail: lixu@cola.iges.org
Save
  • Bamzai, A. S., and Shukla J. , 1999: Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: An observational study. J. Climate, 12, 31173132.

    • Search Google Scholar
    • Export Citation
  • Bamzai, A. S., and Marx L. , 2000: COLA AGCM simulation of the effect of anomalous spring snow over Eurasia on the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 126, 25752584.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., Dumenil L. , Schlese U. , and Roeckner E. , 1988: The effect of Eurasian snow cover on global climate. Science, 239, 504507.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., and Coauthors, 1991: Interpretation of snow-climate feedback as produced by 17 general circulation models. Science, 253, 888892.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and Serreze M. C. , 2000: Effects of variations in East Asian snow cover on modulating atmospheric circulation over the north pacific ocean. J. Climate, 13, 37003710.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Rind D. , 1991: The effect of snow cover on the climate. J. Climate, 4, 689706.

  • Dash, S. K., Singh G. P. , Shekhar M. S. , and Vernekar A. D. , 2005: Response of the Indian summer monsoon circulation and rainfall to seasonal snow depth anomaly over Eurasia. Climate Dyn., 24, 110.

    • Search Google Scholar
    • Export Citation
  • Dong, B., and Valdes P. J. , 1998: Modelling the Asian summer monsoon rainfall and Eurasian winter/spring snow mass. Quart. J. Roy. Meteor. Soc., 124, 25672596.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., Karl T. R. , and Knight R. W. , 1994: Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science, 263, 198200.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., Foster J. L. , Salomonson V. V. , Klein A. G. , Chien J. Y. L. , Center N. , and Greenbelt M. D. , 2001: Development of a technique to assess snow-cover mapping errors from space. IEEE Trans. Geosci. Remote Sens., 39, 432438.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., Kelly R. E. J. , Riggs G. A. , Chang A. T. C. , and Foster J. L. , 2002a: Assessment of the relative accuracy of hemispheric-scale snow-cover maps. Ann. Glaciol., 34, 2430.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., Riggs G. A. , Salomonson V. V. , DiGirolamo N. E. , and Bayr K. J. , 2002b: MODIS snow-cover products. Remote Sens. Environ., 83, 181194.

    • Search Google Scholar
    • Export Citation
  • Hill, R. C., Cartwright P. A. , Nielsen A. C. , and Arbaugh J. F. , 1997: Jackknifing the bootstrap: Some Monte Carlo evidence. Commun. Stat. Simul. Comput., 26, 125139.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Hack J. J. , Shea D. , Caron J. M. , and Rosinski J. , 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Koster, R. D., Dirmeyer P. A. , Hahmann A. N. , Ijpelaar R. , Tyahla L. , Cox P. , and Suarez M. J. , 2002: Comparing the degree of land–atmosphere interaction in four atmospheric general circulation models. J. Hydrometeor., 3, 363375.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., 2004: Representing subgrid snow cover heterogeneities in regional and global models. J. Climate, 17, 13811397.

  • Mote, T. L., 2008: On the role of snow cover in depressing air temperature. J. Appl. Meteor. Climatol., 47, 20082022.

  • Niu, G. Y., and Yang Z. L. , 2007: An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J. Geophys. Res., 112, D21101, doi:10.1029/2007JD008674.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-461+STR, 174 pp.

  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Pu, Z., Xu L. , and Salomonson V. V. , 2007: MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophys. Res. Lett., 34, L06706, doi:10.1029/2007GL029262.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and Koster R. D. , 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett., 31, L19501, doi:10.1029/2004GL020938.

    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., 1993: Monitoring Northern Hemisphere snow cover. Snow Watch ‘92: Detection strategies for snow and ice, Rep. GD-25, National Snow and Ice Data Center, Boulder, CO, 1–25. [Available online at http://climate.rutgers.edu/stateclim_v1/robinson_pubs/refereed/Robinson_1993_monitoring.pdf.]

  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394.

  • Rutter, N., and Coauthors, 2009: Evaluation of forest snow processes models (SnowMIP2). J. Geophys. Res., 114, D06111, doi:10.1029/2008JD011063.

    • Search Google Scholar
    • Export Citation
  • Vernekar, A. D., Zhou J. , and Shukla J. , 1995: The effect of Eurasian snow cover on the Indian monsoon. J. Climate, 8, 248266.

  • Xu, L., 2011: Snow cover as a source of climate predictability: Mechanisms of snow-atmosphere coupling. Ph.D. dissertation, George Mason University, 241 pp. [Available online at http://digilib.gmu.edu:8080/xmlui/handle/1920/6261.]

  • Xu, L., and Li Y. , 2010: Reexamining the impact of Tibetan snow anomalies to the East Asian summer monsoon using MODIS snow retrieval. Climate Dyn., 35, 10391053.

    • Search Google Scholar
    • Export Citation
  • Xu, L., and Dirmeyer P. A. , 2011: Snow-atmosphere coupling strength in a global atmospheric model. Geophys. Res. Lett., 38, L13401, doi:10.1029/2011GL048049.

    • Search Google Scholar
    • Export Citation
  • Xu, L., and Dirmeyer P. A. , 2013: Snow–atmosphere coupling strength. Part II: Albedo effect versus hydrological effect. J. Hydrometeor., 14, 404418.

    • Search Google Scholar
    • Export Citation
  • Xu, L., Gao H. , and Li Y.-Q. , 2009: Sensible heating over the Tibetan Plateau linked to the onset of Asian monsoon. Atmos. Oceanic Sci. Lett., 2, 350356.

    • Search Google Scholar
    • Export Citation
  • Yamada, T. J., Koster R. D. , Kanae S. , and Oki T. , 2007: Estimation of predictability with a newly derived index to quantify similarity among ensemble members. Mon. Wea. Rev., 135, 26742687.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 300 109 5
PDF Downloads 295 87 5