The Landfall and Inland Penetration of a Flood-Producing Atmospheric River in Arizona. Part I: Observed Synoptic-Scale, Orographic, and Hydrometeorological Characteristics

Paul J. Neiman Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Paul J. Neiman in
Current site
Google Scholar
PubMed
Close
,
F. Martin Ralph Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by F. Martin Ralph in
Current site
Google Scholar
PubMed
Close
,
Benjamin J. Moore Cooperative Institute for Research in the Environmental Sciences, NOAA/ESRL, Boulder, Colorado

Search for other papers by Benjamin J. Moore in
Current site
Google Scholar
PubMed
Close
,
Mimi Hughes Cooperative Institute for Research in the Environmental Sciences, NOAA/ESRL, Boulder, Colorado

Search for other papers by Mimi Hughes in
Current site
Google Scholar
PubMed
Close
,
Kelly M. Mahoney Cooperative Institute for Research in the Environmental Sciences, NOAA/ESRL, Boulder, Colorado

Search for other papers by Kelly M. Mahoney in
Current site
Google Scholar
PubMed
Close
,
Jason M. Cordeira National Research Council, NOAA/ESRL, Boulder, Colorado

Search for other papers by Jason M. Cordeira in
Current site
Google Scholar
PubMed
Close
, and
Michael D. Dettinger U.S. Geological Survey, and Scripps Institution of Oceanography, La Jolla, California

Search for other papers by Michael D. Dettinger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmospheric rivers (ARs) are a dominant mechanism for generating intense wintertime precipitation along the U.S. West Coast. While studies over the past 10 years have explored the impact of ARs in, and west of, California’s Sierra Nevada and the Pacific Northwest’s Cascade Mountains, their influence on the weather across the intermountain west remains an open question. This study utilizes gridded atmospheric datasets, satellite imagery, rawinsonde soundings, a 449-MHz wind profiler and global positioning system (GPS) receiver, and operational hydrometeorological observing networks to explore the dynamics and inland impacts of a landfalling, flood-producing AR across Arizona in January 2010. Plan-view, cross-section, and back-trajectory analyses quantify the synoptic and mesoscale forcing that led to widespread precipitation across the state. The analyses show that a strong AR formed in the lower midlatitudes over the northeastern Pacific Ocean via frontogenetic processes and sea surface latent-heat fluxes but without tapping into the adjacent tropical water vapor reservoir to the south. The wind profiler, GPS, and rawinsonde observations document strong orographic forcing in a moist neutral environment within the AR that led to extreme, orographically enhanced precipitation. The AR was oriented nearly orthogonal to the Mogollon Rim, a major escarpment crossing much of central Arizona, and was positioned between the high mountain ranges of northern Mexico. High melting levels during the heaviest precipitation contributed to region-wide flooding, while the high-altitude snowpack increased substantially. The characteristics of the AR that impacted Arizona in January 2010, and the resulting heavy orographic precipitation, are comparable to those of landfalling ARs and their impacts along the west coasts of midlatitude continents.

Corresponding author address: Paul J. Neiman, Physical Sciences Division, NOAA/Earth System Research Laboratory, Mail Code R/PSD2, 325 Broadway, Boulder, CO 80305. E-mail: paul.j.neiman@noaa.gov

Abstract

Atmospheric rivers (ARs) are a dominant mechanism for generating intense wintertime precipitation along the U.S. West Coast. While studies over the past 10 years have explored the impact of ARs in, and west of, California’s Sierra Nevada and the Pacific Northwest’s Cascade Mountains, their influence on the weather across the intermountain west remains an open question. This study utilizes gridded atmospheric datasets, satellite imagery, rawinsonde soundings, a 449-MHz wind profiler and global positioning system (GPS) receiver, and operational hydrometeorological observing networks to explore the dynamics and inland impacts of a landfalling, flood-producing AR across Arizona in January 2010. Plan-view, cross-section, and back-trajectory analyses quantify the synoptic and mesoscale forcing that led to widespread precipitation across the state. The analyses show that a strong AR formed in the lower midlatitudes over the northeastern Pacific Ocean via frontogenetic processes and sea surface latent-heat fluxes but without tapping into the adjacent tropical water vapor reservoir to the south. The wind profiler, GPS, and rawinsonde observations document strong orographic forcing in a moist neutral environment within the AR that led to extreme, orographically enhanced precipitation. The AR was oriented nearly orthogonal to the Mogollon Rim, a major escarpment crossing much of central Arizona, and was positioned between the high mountain ranges of northern Mexico. High melting levels during the heaviest precipitation contributed to region-wide flooding, while the high-altitude snowpack increased substantially. The characteristics of the AR that impacted Arizona in January 2010, and the resulting heavy orographic precipitation, are comparable to those of landfalling ARs and their impacts along the west coasts of midlatitude continents.

Corresponding author address: Paul J. Neiman, Physical Sciences Division, NOAA/Earth System Research Laboratory, Mail Code R/PSD2, 325 Broadway, Boulder, CO 80305. E-mail: paul.j.neiman@noaa.gov
Save
  • Beebe, R. G., and Bates F. C. , 1955: A mechanism for assisting in the release of convective instability. Mon. Wea. Rev., 83, 110.

  • Bernhardt, D., 2006: Glacier National Park Flooding November 2006. NWS Western Region Tech. Attachment 08-23, 15 pp. [Available online at http://www.wrh.noaa.gov/media/wrh/online_publications/talite/talite0823.pdf.]

  • Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. Holopainen, Eds., Amer. Meteor. Soc., 129–153.

  • Calloway, C. G., 2003: One Vast Winter Count—The Native American West before Lewis and Clark. University of Nebraska Press, 631 pp.

  • Carlson, T. N., 1991: Mid-Latitude Weather Systems. Harper-Collins, 507 pp.

  • Dettinger, M. D., 2004: Fifty-two years of “pineapple-express” storms across the west coast of North America. California Energy Commission Rep. CEC-500-2005-004, 15 pp. [Available online at http://www.energy.ca.gov/2005publications/CEC-500-2005-004/CEC-500-2005-004.PDF.]

  • Dettinger, M. D., 2011: Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, doi:10.1111/j.1752-1688.2011.00546.x.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., Hidalgo H. , Das T. , Cayan D. , and Knowles N. , 2009: Projection of potential flood regime changes in California. California Energy Commission Rep. CEC-500-2009-050-D, 68 p.

  • Dettinger, M. D., Ralph F. M. , Das T. , Neiman P. J. , and Cayan D. , 2011: Atmospheric rivers, floods, and the water resources of California. Water, 3, 455478.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., and Coauthors, 2012: Design and quantification of an extreme winter storm scenario for emergency preparedness and planning exercises in California. Nat. Hazards, 60, 10851111.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., and Hess G. D. , 1997: Description of the HYSPLIT_4 modeling system. NOAA Tech. Memo. ERL ARL-224, NOAA/Air Resources Laboratory, Silver Spring, MD, 24 pp.

  • Draxler, R. R., and Rolph G. D. , cited 2011: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model. NOAA/Air Resources Laboratory. [Available online at http://ready.arl.noaa.gov/HYSPLIT.php.]

  • Duan, J. M., and Coauthors, 1996: GPS meteorology: Direct estimation of the absolute value of precipitable water. J. Appl. Meteor., 35, 830838.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and Klemp J. B. , 1982: On the effects of moisture on the Brunt–Vaisala frequency. J. Atmos. Sci., 39, 21522158.

  • Guan, B., Waliser D. E. , Molotch N. P. , Fetzer E. J. , and Neiman P. J. , 2012: Does the Madden–Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Mon. Wea. Rev., 140, 325342.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and Grumm R. H. , 2001: Using normalized climatological anomalies to rank synoptic-scale events objectively. Mon. Wea. Rev., 129, 24262442.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Silvia V. B. S. , Shi W. , and Larson J. , 2007: Relationships between climate variability and fluctuations in daily precipitation over the United States. J. Climate, 20, 35613579.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., Allan R. P. , Wood E. F. , Villarini G. , Brayshaw D. J. , and Wade A. J. , 2011: Winter floods in Britain are connected with atmospheric rivers. Geophys. Res. Lett., 38, L23803, doi:10.1029/2011GL049783.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Qian Y. , 2009: Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett., 36, L03820, doi:10.1029/2008GL036445.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., Neiman P. J. , Martner B. E. , White A. B. , Gottas D. J. , and Ralph F. M. , 2008: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level. J. Hydrometeor., 9, 194211.

    • Search Google Scholar
    • Export Citation
  • Mattioli, V., Westwater E. R. , Cimini C. , Liljegren J. S. , Lesht B. M. , Gutman S. I. , and Schmidlin F. J. , 2007: Analysis of radiosonde and ground-based remotely sensed PWV data from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment. J. Atmos. Oceanic Technol., 24, 415431.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., Clark M. P. , and Hay L. E. , 2007: Rain-on-snow events in the western United States. Bull. Amer. Meteor. Soc., 88, 319328.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and Shapiro M. A. , 1989: Retrieving horizontal temperature gradients and advections from single-station wind profiler observations. Wea. Forecasting, 4, 222233.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Kuo Y.-H. , Wee T.-K. , Ma Z. , Taylor G. H. , and Dettinger M. D. , 2008a: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Lundquist J. , and Dettinger M. D. , 2008b: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., White A. B. , Ralph F. M. , Gottas D. J. , and Gutman S. I. , 2009: A water vapour flux tool for precipitation forecasting. Water Manage.,162, 83–94.

  • Neiman, P. J., Schick L. J. , Ralph F. M. , Hughes M. , and Wick G. A. , 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358.

    • Search Google Scholar
    • Export Citation
  • Newman, M., Kiladis G. N. , Weickmann K. M. , Ralph F. M. , and Sardeshmukh P. D. , 2012: Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. Climate, 25, 73417361.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2007: Coastal wind profiler technology evaluation: An integrated ocean system project. Final Rep. to the IOOS Program Office in the National Ocean Service, 57 pp. [Available online at http://www.esrl.noaa.gov/psd/psd2/programs/ioos/pdf/IOOS_Final%20Report_Nov_15_2007.pdf.]

  • NCDC, 2010: Storm Data. Vol. 52, No. 1, 250 pp.

  • Petterssen, S., 1956: Motion and Motion Systems. Vol. 1. Weather Analysis and Forecasting, 2nd ed. McGraw-Hill, 428 pp.

  • Ralph, F. M., and Dettinger M. D. , 2012: Historical and national perspectives on extreme west coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Kingsmill D. E. , Persson P. O. G. , White A. B. , Strem E. T. , Andrews E. D. , and Antweiler R. C. , 2003: The impact of a prominent rain shadow on flooding in California’s Santa Cruz Mountains: A CALJET case study and sensitivity to the ENSO cycle. J. Hydrometeor., 4, 12431264.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Wick G. A. , 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Rotunno R. , 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Wick G. A. , Gutman S. I. , Dettinger M. D. , Cayan D. R. , and White A. B. , 2006: Flooding on California’s Russian River: The role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Kiladis G. N. , Weickmann K. , and Reynolds D. M. , 2011: A multi-scale observational case study of a Pacific atmospheric river exhibiting tropical-extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189.

    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., Lin Y.-L. , and Rotunno R. , 2008: Dynamic forcing and mesoscale variability of heavy precipitation events over the Sierra Nevada Mountains. Mon. Wea. Rev., 136, 6277.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., and Steenburgh W. J. , 2012: Quantifying the role of atmospheric rivers in the interior western United States. Atmos. Sci. Lett., 13, 257261.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Shafer, J. C., Steenburgh W. J. , Cox J. A. W. , and Monteverdi J. P. , 2006: Terrain influences on synoptic storm structure and mesoscale precipitation distribution during IPEX IOP3. Mon. Wea. Rev., 134, 478497.

    • Search Google Scholar
    • Export Citation
  • Smith, B. L., Yuter S. E. , Neiman P. J. , and Kingsmill D. E. , 2010: Water vapor fluxes and orographic precipitation over northern California associated with a land-falling atmospheric river. Mon. Wea. Rev., 138, 74100.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and Blazek T. R. , 2001: Topographic distortion of a cold front over the Snake River plain and central Idaho mountains. Wea. Forecasting, 16, 301314.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., Neuman C. R. , West G. L. , and Bosart L. F. , 2009: Discrete frontal propagation over the Sierra–Cascade mountains and intermountain west. Mon. Wea. Rev., 137, 20002020.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., Marwitz J. D. , Pace J. C. , and Carbone R. E. , 1984: Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci., 41, 32273237.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., Forster C. , and Sodemann H. , 2008: Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N—A tale of hurricanes and an atmospheric river. J. Geophys. Res., 113, D05102, doi:10.1029/2007JD009006.

    • Search Google Scholar
    • Export Citation
  • Stonestrom, D. A., Constantz J. , Ferré T. P. A. , and Leake S. A. , Eds., 2007: Ground-water recharge in the arid and semiarid southwestern United States. U.S. Geological Survey Professional Paper 1703, 414 pp. [Available online at http://pubs.usgs.gov/pp/pp1703/.]

  • Trabant, D. C., and Clagett G. P. , 1990: Measurement and evaluation of snowpacks. Cold Regions Hydrology and Hydraulics, W. L. Ryan and R. D. Crissman, Eds., American Society of Civil Engineers, 39–93.

  • Viale, M., and Nuñez M. N. , 2011: Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J. Hydrometeor., 12, 481507.

    • Search Google Scholar
    • Export Citation
  • Weber, B. L., Wuertz D. B. , Welsh D. C. , and McPeek R. , 1993: Quality controls for profiler measurements of winds and RASS temperatures. J. Atmos. Oceanic Technol., 10, 452464.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1995: The intercomparison of 53 SSM/I water vapor algorithms. Tech. Rep. on WetNet Water Vapor Intercomparison Project (VIP), Remote Sensing Systems, Santa Rosa, CA, 19 pp.

  • West, G. L., and Steenburgh W. J. , 2010: Life cycle and mesoscale frontal structure of an intermountain cyclone. Mon. Wea. Rev., 138, 25282545.

    • Search Google Scholar
    • Export Citation
  • West, G. L., and Steenburgh W. J. , 2011: Influences of the Sierra Nevada on intermountain cold-front evolution. Mon. Wea. Rev., 139, 31843207.

    • Search Google Scholar
    • Export Citation
  • White, A. B., Gottas D. J. , Strem E. , Ralph F. M. , and Neiman P. J. , 2002: An automated bright-band height detection algorithm for use with Doppler radar vertical spectral moments. J. Oceanic Atmos. Technol., 19, 687697.

    • Search Google Scholar
    • Export Citation
  • White, A. B., Ralph F. M. , Jordan J. R. , King C. W. , Gottas D. J. , Neiman P. J. , Bianco L. , and White D. E. , 2007: Expanding the NOAA profiler network: Technology evaluation and new applications for the coastal environment. Preprints, Seventh Conf. on Coastal Atmospheric and Oceanic Prediction and Processes, San Diego, CA, Amer. Meteor. Soc., 8.6. [Available online at https://ams.confex.com/ams/pdfpapers/127228.pdf.]

  • White, A. B., and Coauthors, 2012: NOAA’s rapid response to the Howard A. Hanson dam flood risk management crisis. Bull. Amer. Meteor. Soc., 93, 189207.

    • Search Google Scholar
    • Export Citation
  • Wolter, K., and Timlin M. S. , 1998: Measuring the strength of ENSO events: How does 1997/98 rank? Weather, 53, 315324.

  • Yin, H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Newell R. E. , 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 749 247 15
PDF Downloads 494 170 10