Latent Heat Flux and Canopy Conductance Based on Penman–Monteith, Priestley–Taylor Equation, and Bouchet’s Complementary Hypothesis

Kaniska Mallick * Jet Propulsion Laboratory, California Institure of Technology, Pasadena, California

Search for other papers by Kaniska Mallick in
Current site
Google Scholar
PubMed
Close
,
Andrew Jarvis Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom

Search for other papers by Andrew Jarvis in
Current site
Google Scholar
PubMed
Close
,
Joshua B. Fisher * Jet Propulsion Laboratory, California Institure of Technology, Pasadena, California

Search for other papers by Joshua B. Fisher in
Current site
Google Scholar
PubMed
Close
,
Kevin P. Tu Pioneer Hi-Bred International, Woodland, California

Search for other papers by Kevin P. Tu in
Current site
Google Scholar
PubMed
Close
,
Eva Boegh Department of Environmental Social and Spatial Change, Roskilde University, Roskilde, Denmark

Search for other papers by Eva Boegh in
Current site
Google Scholar
PubMed
Close
, and
Dev Niyogi Department of Agronomy, and Department of Earth and Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana

Search for other papers by Dev Niyogi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A novel method is presented to analytically resolve the terrestrial latent heat flux (λE) and conductances (boundary layer gB and surface gS) using net radiation (RN), ground heat flux (G), air temperature (Ta), and relative humidity (RH). This method consists of set of equations where the two unknown internal state variables (gB and gS) were expressed in terms of the known core variables, combining diffusion equations, the Penman–Monteith equation, the Priestley–Taylor equation, and Bouchet’s complementary hypothesis. Estimated λE is validated with the independent eddy covariance λE observations over Soil Moisture Experiment 2002 (SMEX-02); the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP) selected sites from FLUXNET and tropics eddy flux, representing four climate zones (tropics, subtropics, temperate, and cold); and multiple biomes. The authors find a RMSE of 23.8–54.6 W m−2 for hourly λE over SMEX-02 and GCIP and 23.8–29.0 W m−2 for monthly λE over the FLUXNET and tropics. Observational and modeled evidence in the reduction in annual evaporation (E) pattern on the order of 33% from 1999 to 2006 was found in central Amazonia. Retrieved gS responded to vapor pressure deficit, measured λE, and gross photosynthesis in a theoretically robust behavior. However, the current scheme [Penman–Monteith–Bouchet–Lhomme (PMBL)] showed some overestimation of λE in limited soil moisture regimes. PMBL provides similar results when compared with another Priestley–Taylor–based λE estimation approach [Priestley–Taylor–Jet Propulsion Laboratory (PT-JPL)] but with the advantage of having the conductances analytically recovered.

Corresponding author address: K. Mallick, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: kaniska.mallick@gmail.com

Abstract

A novel method is presented to analytically resolve the terrestrial latent heat flux (λE) and conductances (boundary layer gB and surface gS) using net radiation (RN), ground heat flux (G), air temperature (Ta), and relative humidity (RH). This method consists of set of equations where the two unknown internal state variables (gB and gS) were expressed in terms of the known core variables, combining diffusion equations, the Penman–Monteith equation, the Priestley–Taylor equation, and Bouchet’s complementary hypothesis. Estimated λE is validated with the independent eddy covariance λE observations over Soil Moisture Experiment 2002 (SMEX-02); the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP) selected sites from FLUXNET and tropics eddy flux, representing four climate zones (tropics, subtropics, temperate, and cold); and multiple biomes. The authors find a RMSE of 23.8–54.6 W m−2 for hourly λE over SMEX-02 and GCIP and 23.8–29.0 W m−2 for monthly λE over the FLUXNET and tropics. Observational and modeled evidence in the reduction in annual evaporation (E) pattern on the order of 33% from 1999 to 2006 was found in central Amazonia. Retrieved gS responded to vapor pressure deficit, measured λE, and gross photosynthesis in a theoretically robust behavior. However, the current scheme [Penman–Monteith–Bouchet–Lhomme (PMBL)] showed some overestimation of λE in limited soil moisture regimes. PMBL provides similar results when compared with another Priestley–Taylor–based λE estimation approach [Priestley–Taylor–Jet Propulsion Laboratory (PT-JPL)] but with the advantage of having the conductances analytically recovered.

Corresponding author address: K. Mallick, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: kaniska.mallick@gmail.com
Save
  • Anderson, M. C., Norman J. M. , Mecikalski J. R. , Otkin J. A. , and Kustas W. P. , 2007: A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing. 1: Model formulation. J. Geophys. Res., 112, D10117, doi:10.1029/2006JD007506.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Norman J. M. , Kustas W. P. , Houborg R. , Starks P. J. , and Agam N. , 2008: A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sens. Environ., 112, 42274241.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D. D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434.

    • Search Google Scholar
    • Export Citation
  • Ball, J. T., Woodrow I. E. , and Berry J. A. , 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Progress in Photosynthesis Research, J. Biggins, Ed., M. Nijhoff Publishers, 5.221–5.224.

  • Barr, A. G., Morgenstern K. , Black T. A. , McCaughey J. H. , and Nesic Z. , 2006: Surface energy balance closure by the eddy covariance method above three boreal forest stands and implications for the measurement of the CO2 flux. Agric. For. Meteor., 140, 322337.

    • Search Google Scholar
    • Export Citation
  • Boegh, E., and Soegaard H. , 2004: Remote sensing based estimation of evapotranspiration rates. Int. J. Remote Sens., 25, 25352551.

  • Boegh, E., Soegaard H. , and Thomsen A. , 2002: Evaluating evapotranspiration rates and surface conditions using Landsat TM to estimate atmospheric resistance and surface resistance. Remote Sens. Environ., 79, 329343.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1995: Land atmosphere CO2 exchange simulated by a land-surface process model coupled to an atmospheric general circulation model. J. Geophys. Res., 100, 28172831.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, doi:10.1126/science.1155121.

    • Search Google Scholar
    • Export Citation
  • Bouchet, R. J., 1963: Evapotranspiration re’elle evapotranspiration potentielle, signification climatique. Int. Assoc. Sci. Hydrol., 62, 134142.

    • Search Google Scholar
    • Export Citation
  • Bowen, I. S., 1926: The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev., 27, 779787.

  • Brutsaert, W., and Stricker H. , 1979: An advection–aridity approach to estimate actual regional evapotranspiration. Water Resour. Res., 15, 443450.

    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., Efimova N. A. , Zubenok L. I. , and Strokina L. A. , 1962: The heat balance of the earth’s surface. Izv. Akad. Nauk SSSR, Ser. Geogr., 1, 616.

    • Search Google Scholar
    • Export Citation
  • Cahill, A. T., Parlange M. B. , Jackson T. J. , O’Neill P. , and Schmugge T. , 1999: Evaporation from nonvegetated surface: Surface aridity methods and passive microwave remote sensing. J. Appl. Meteor., 38, 13461351.

    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., Reginato R. J. , and Idso S. B. , 1986: An analysis of infrared temperature observations over wheat and calculation of latent heat flux. Agric. For. Meteor., 37, 7588.

    • Search Google Scholar
    • Export Citation
  • Denmead, O. T., and Shaw R. H. , 1962: Availability of soil water to plants as affected by soil moisture content and meteorological conditions. Agron. J., 54, 385390.

    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., Tu K. P. , and Baldocchi D. D. , 2008: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ., 112, 901919.

    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., and Coauthors, 2009: The land–atmosphere water flux in the tropics. Global Change Biol., 15, 26942714.

  • Foken, T., Goeke M. , Mauder M. , Mahrt L. , Amiro B. , and Munger W. , 2004: Post-field data quality control. Handbook of Micrometeorology: A Guide for Surface Flux Measurements and Analysis, X. Lee, W. J. Massman, and B. E. Law, Eds., Kluwer Academic Publishers, 181–203.

  • Foley, J. A., Prentice I. C. , Ramunkutty N. , Levis S. , Pollard D. , Sitch S. , and Haxeltine A. , 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles, 10, 603628.

    • Search Google Scholar
    • Export Citation
  • Jarvis, P. G., 1976: The interpretation the variations of leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. Roy. Soc. London, B273, 593610.

    • Search Google Scholar
    • Export Citation
  • Jarvis, P. G., and McNaughton K. G. , 1986: Stomatal control of transpiration: Scaling up from leaf to region. Adv. Ecol. Res., 15, 149.

    • Search Google Scholar
    • Export Citation
  • Jones, H. G., 1998: Stomatal control of photosynthesis and transpiration. J. Exp. Bot., 49, 387398.

  • Katul, G. G., Manzoni S. , Palmroth S. , and Oren R. , 2010: A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Ann. Bot., 105, 431442.

    • Search Google Scholar
    • Export Citation
  • Kondo, J., Saigusa N. , and Sato T. , 1990: A parameterization of evaporation from bare soil surface. J. Appl. Meteor., 29, 385389.

  • Kramer, P. J., and Boyer J. S. , 1995: Water Relation of Plants and Soils. Academic Press, 495 pp.

  • Kustas, W. P., Prueger J. H. , Hipps L. E. , Hatfield J. L. , and Meek D. , 1998: Inconsistencies in net radiation estimates from use of several models of instruments in a desert environment. Agric. For. Meteor., 90, 257263.

    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., Hatfield J. L. , and Prueger J. H. , 2005: The Soil Moisture–Atmosphere Coupling Experiment (SMACEX): Background, hydrometeorological conditions, and preliminary findings. J. Hydrometeor., 6, 791804.

    • Search Google Scholar
    • Export Citation
  • Lee, T. J., and Pielke R. , 1992: Estimating the soil surface specific humidity. J. Appl. Meteor., 31, 480484.

  • Leuning, R., 1995: A critical appraisal of a combined stomatal–photosynthesis model for C3 plants. Plant Cell Environ., 18, 339355.

    • Search Google Scholar
    • Export Citation
  • Lhomme, J. P., 1997: A theoretical basis for the Priestley–Taylor coefficient. Bound.-Layer Meteor., 82, 179191.

  • Lhomme, J. P., Chehbouni A. , and Monteny B. , 2000: Sensible heat flux–radiometric surface temperature relationship over sparse vegetation: Parameterizing B−1. Bound.-Layer Meteor., 97, 431457.

    • Search Google Scholar
    • Export Citation
  • Lohmann, D., Raschke E. , Nijssen B. , and Lettenmaier D. , 1998: Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol. Sci. J., 43, 131141.

    • Search Google Scholar
    • Export Citation
  • Malhi, Y., Pegoraro E. , Nobre A. D. , Pereira M. G. P. , Grace J. , Culf A. D. , and Clement R. , 2002: Energy and water dynamics of a central Amazonian rain forest. J. Geophys. Res., 107, 8061, doi:10.1029/2001JD000623.

    • Search Google Scholar
    • Export Citation
  • Mallick, K., Bhattacharya B. K. , and Patel N. K. , 2009: Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agric. For. Meteor., 149, 13271342.

    • Search Google Scholar
    • Export Citation
  • Massman, W. J., and Lee X. , 2002: Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric. For. Meteor., 113, 121144.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., Diak G. R. , Anderson M. C. , and Norman J. M. , 1999: Estimating fluxes on continental scales using remotely sensed data in an atmospheric–land exchange model. J. Appl. Meteor., 38, 13521369.

    • Search Google Scholar
    • Export Citation
  • Meinzer, F. C., Hinckley T. M. , and Ceulemans R. , 1997: Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy. Plant Cell Environ., 20, 13011308.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, J. B., and Coauthors, 1997: A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J. Hydrol., 188–189, 589611.

    • Search Google Scholar
    • Export Citation
  • Monteith, J. L., 1965: Evaporation and environment. The State and Movement of Water in Living Organisms, G. E. Fogg, Ed., Symposia of the Society for Experimental Biology, Vol. 19, Academic Press, 205–234.

  • Monteith, J. L., 1995: Accommodation between transpiring vegetation and the convective boundary layer. J. Hydrol., 166, 251263.

  • Nappo, C. J., Jr., 1975: Parameterization of surface moisture and evaporation rate in a planetary boundary layer model. J. Appl. Meteor., 14, 289296.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 1998: GCIP Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project: A Review of Progress and Opportunities. National Academies Press, 112 pp.

  • Niyogi, D., and Raman S. , 1997: Comparison of four different stomatal resistance schemes using FIFE observations. J. Appl. Meteor., 36, 903917.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., and Xue Y. , 2006: Soil moisture regulates the biological response of elevated atmospheric CO2 concentrations in a coupled atmosphere biosphere model. Global Planet. Change, 54, 94108.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., Raman S. , and Alapaty K. , 1998: Comparison of four different stomatal resistance schemes using FIFE observations. Part II: Analysis of terrestrial biospheric–atmospheric interactions. J. Appl. Meteor., 37, 13011320.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., Raman S. , and Alapaty K. , 1999: Uncertainty in specification of surface characteristics, Part II: Hierarchy of interaction-explicit statistical analysis. Bound.-Layer Meteor., 91, 341366.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., Alapaty K. , Raman S. , and Chen F. , 2009: Development and evaluation of a coupled photosynthesis-based gas exchange evapotranspiration model (GEM) for mesoscale weather forecasting applications. J. Appl. Meteor. Climatol., 48, 349368.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549.

    • Search Google Scholar
    • Export Citation
  • Norman, J. M., and Campbell G. S. , 1998: An Introduction to Environmental Biophysics. 2nd ed. Springer, 68 pp.

  • Norman, J. M., Kustas W. P. , and Humes K. S. , 1995: Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteor., 77, 263293.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1993: Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones: Significance of the distribution of evaporation. J. Atmos. Sci., 50, 18741887.

    • Search Google Scholar
    • Export Citation
  • Paw U, K. T., and Gao W. , 1988: Applications of solutions to non-linear energy budget equations. Agric. For. Meteor., 43, 121145.

  • Penman, H. L., 1948: Natural evaporation from open water, bare soil, and grass. Proc. Roy. Soc. London, A193, 120146.

  • Pielke, R. A., Sr., and Coauthors, 2011: Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev.: Climate Change, 2, 828850, doi:10.1002/wcc.144.

    • Search Google Scholar
    • Export Citation
  • Pitman, A., 2003: The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol., 23, 479510.

    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., and Taylor R. J. , 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 8192.

    • Search Google Scholar
    • Export Citation
  • Prueger, J. H., and Coauthors, 2005: Tower and aircraft eddy covariance measurements of water, energy, and carbon dioxide fluxes during SMACEX. J. Hydrometeor., 6, 954960.

    • Search Google Scholar
    • Export Citation
  • Ramirez, J. A., Hobbins M. T. , and Brown T. C. , 2005: Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet’s hypothesis. Geophys. Res. Lett., 32, L15401, doi:10.1029/2005GL023549.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., and Farquhar G. D. , 2004: Changes in Australian pan evaporation from 1970 to 2002. Int. J. Climatol., 25, 10771090.

  • Sanchez, J. M., Caselles V. , Nicols R. , Coll C. , and Kustas W. P. , 2009: Estimating energy balance fluxes above a boreal forest from radiometric surface temperature observations. Agric. For. Meteor., 149, 10371049.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and Coauthors, 1997: Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275, 502509.

    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., Gurney R. J. , Hsu A. Y. , and Ormsby J. P. , 1989: FIFE: The variation in energy partition at surface flux sites. Remote Sensing and Large Scale Processes, A. Rango, Ed., IAHS Publ. 186, 67–74.

  • Stewart, J. B., and Thom A. S. , 1973: Energy budget in pine forest. Quart. J. Roy. Meteor. Soc., 99, 154170.

  • Su, H., McCabe M. F. , Wood E. F. , Su Z. , and Prueger J. H. , 2005: Modeling evapotranspiration during SMACEX: Comparing two approaches for local- and regional-scale prediction. J. Hydrometeor., 6, 910922.

    • Search Google Scholar
    • Export Citation
  • Sugita, M., Usui J. , Tamagawa I. , and Kaihotsu I. , 2001: Complementary relationship with convective boundary layer model to estimate regional evaporation. Water Resour. Res., 37, 353365.

    • Search Google Scholar
    • Export Citation
  • Sumner, D. M., and Jacobs J. M. , 2005: Utility of Penman–Monteith, Priestley–Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration. J. Hydrol., 308, 81104.

    • Search Google Scholar
    • Export Citation
  • Thom, A. S., 1975: Momentum, mass and heat exchange of plant communities. Vegetation and the Atmosphere, J. L. Monteith, Ed., Academic Press, 57–109.

  • Tobin, D. C., and Coauthors, 2006: Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res., 111, D09S14, doi:10.1029/2005JD006103.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Caron J. M. , Stepaniak D. P. , and Worley S. , 2002: Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107, 4065, doi:10.1029/2000JD000298.

    • Search Google Scholar
    • Export Citation
  • Troufleau, D., Lhomme J. P. , Monteny B. , and Vidal A. , 1997: Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation. I. An experimental analysis of kB−1 parameter. J. Hydrol., 188–189, 815838.

    • Search Google Scholar
    • Export Citation
  • Tuzet, A., Perrier A. , and Leuning R. , 2003: A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell Environ., 26, 10971116.

    • Search Google Scholar
    • Export Citation
  • Werth, D., and Avissar R. , 2004: The regional evapotranspiration of the Amazon. J. Hydrometeor., 5, 100109.

  • Wetzel, P. J., Atlas D. , and Woodward R. H. , 1984: Determining soil moisture from geosynchronous satellite infrared data: A feasibility study. J. Climate Appl. Meteor., 23, 376391.

    • Search Google Scholar
    • Export Citation
  • Wilson, K. B., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agric. For. Meteor., 113, 223243.

  • Ye, Z., and Pielke R. , 1993: Atmospheric parameterization of evaporation from non–plant-covered surfaces. J. Appl. Meteor., 32, 12481258.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 732 233 9
PDF Downloads 520 145 6