Comparison of TRMM 2A25 Products, Version 6 and Version 7, with NOAA/NSSL Ground Radar–Based National Mosaic QPE

Pierre-Emmanuel Kirstetter * School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma
NOAA/National Severe Storms Laboratory, Norman, Oklahoma
Atmospheric Radar Research Center, National Weather Center, Norman, Oklahoma

Search for other papers by Pierre-Emmanuel Kirstetter in
Current site
Google Scholar
PubMed
Close
,
Y. Hong * School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Oklahoma
Atmospheric Radar Research Center, National Weather Center, Norman, Oklahoma

Search for other papers by Y. Hong in
Current site
Google Scholar
PubMed
Close
,
J. J. Gourley NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by J. J. Gourley in
Current site
Google Scholar
PubMed
Close
,
M. Schwaller NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by M. Schwaller in
Current site
Google Scholar
PubMed
Close
,
W. Petersen NASA Wallops Flight Facility, Wallops Island, Virginia

Search for other papers by W. Petersen in
Current site
Google Scholar
PubMed
Close
, and
J. Zhang NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by J. Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Characterization of the error associated with satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving spaceborne passive and active microwave measurements for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. The authors focus here on the relative error structure of Tropical Rainfall Measurement Mission (TRMM) precipitation radar (PR) quantitative precipitation estimation (QPE) at the ground by comparison of 2A25 products with reference values derived from NOAA/NSSL’s ground radar–based National Mosaic and QPE system (NMQ/Q2). The primary contribution of this study is to compare the new 2A25, version 7 (V7), products that were recently released as a replacement of version 6 (V6). Moreover, the authors supply uncertainty estimates of the rainfall products so that they may be used in a quantitative manner for applications like hydrologic modeling. This new version is considered superior over land areas and will likely be the final version for TRMM PR rainfall estimates. Several aspects of the two versions are compared and quantified, including rainfall rate distributions, systematic biases, and random errors. All analyses indicate that V7 is in closer agreement with the reference rainfall compared to V6.

Corresponding author address: Professor Yang Hong, National Weather Center, 120 David L. Boren Blvd., Atmospheric Radar Research Center, Suite 4610, Norman, OK 73072-7303. E-mail: yanghong@ou.edu

Abstract

Characterization of the error associated with satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving spaceborne passive and active microwave measurements for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. The authors focus here on the relative error structure of Tropical Rainfall Measurement Mission (TRMM) precipitation radar (PR) quantitative precipitation estimation (QPE) at the ground by comparison of 2A25 products with reference values derived from NOAA/NSSL’s ground radar–based National Mosaic and QPE system (NMQ/Q2). The primary contribution of this study is to compare the new 2A25, version 7 (V7), products that were recently released as a replacement of version 6 (V6). Moreover, the authors supply uncertainty estimates of the rainfall products so that they may be used in a quantitative manner for applications like hydrologic modeling. This new version is considered superior over land areas and will likely be the final version for TRMM PR rainfall estimates. Several aspects of the two versions are compared and quantified, including rainfall rate distributions, systematic biases, and random errors. All analyses indicate that V7 is in closer agreement with the reference rainfall compared to V6.

Corresponding author address: Professor Yang Hong, National Weather Center, 120 David L. Boren Blvd., Atmospheric Radar Research Center, Suite 4610, Norman, OK 73072-7303. E-mail: yanghong@ou.edu
Save
  • Adeyewa, Z. D., and Nakamura K. , 2003: Validation of TRMM radar rainfall data over major climatic regions in Africa. J. Appl. Meteor., 42, 331347.

    • Search Google Scholar
    • Export Citation
  • Akantziliotou, K., Rigby R. A. , and Stasinopoulos D. M. , 2002: The R implementation of generalized additive models for location, scale and shape. Statistical Modelling in Society: Proceedings of the 17th International Workshop on Statistical Modelling, M. Stasinopoulos and G. Touloumi, Eds., Statistical Modelling Society, 75–83.

  • Amitai, E., Llort X. , and Sempere-Torres D. , 2006: Opportunities and challenges for evaluating precipitation estimates during GPM mission. Meteor. Z., 15, 551557.

    • Search Google Scholar
    • Export Citation
  • Amitai, E., Llort X. , and Sempere-Torres D. , 2009: Comparison of TRMM radar rainfall estimates with NOAA next-generation QPE. J. Meteor. Soc. Japan, 87A, 109118.

    • Search Google Scholar
    • Export Citation
  • Amitai, E., Petersen W. , Llort X. , and Vasiloff S. , 2012: Multi-platform comparisons of rain intensity for extreme precipitation events. IEEE Trans. Geosci. Remote Sens., 50, 675686.

    • Search Google Scholar
    • Export Citation
  • Berges, J. C., Chopin F. , Jobard I. , and Roca R. , 2010: EPSAT-SG: A satellite method for precipitation estimation; its concept and implementation for AMMA experiment. Ann. Geophys., 28, 289308.

    • Search Google Scholar
    • Export Citation
  • Ciach, J. G., Morrissey M. L. , and Krajewski W. F. , 2000: Conditional bias in radar rainfall estimation. J. Appl. Meteor., 39, 19411946.

    • Search Google Scholar
    • Export Citation
  • Ebert, E., 2007: Methods for verifying satellite precipitation estimates. Measuring Precipitation from Space: EURAINSAT and the Future, V. Levizzani, P. Bauer, and F. J. Turk, Eds., Springer, 345–356.

  • Iguchi, T., Kozu T. , Meneghini R. , Awaka J. , and Okamoto K. , 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 20382052.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., Kozu T. , Kwiatkowski J. , Meneghini R. , Awaka J. , and Okamoto K. , 2009: Uncertainties in the rain profiling algorithm for the TRMM precipitation radar. J. Meteor. Soc. Japan, 87A, 130.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P. E., and Coauthors, 2012: Toward a framework for systematic error modeling of spaceborne radar with NOAA/NSSL ground radar–based National Mosaic QPE. J. Hydrometeor., 13, 12851300.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P. E., Viltard N. , and Gosset M. , 2013: An error model for instantaneous satellite rainfall estimates: Evaluation of BRAIN-TMI over West Africa. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.1964, in press.

    • Search Google Scholar
    • Export Citation
  • Kitzmiller, K., and Coauthors, 2011: Evolving multisensor precipitation estimation methods: Their impacts on flow prediction using a distributed hydrologic model. J. Hydrometeor., 12, 14141431.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Fritz A. , Smith T. , Hondl K. , and Stumpf G. , 2007: An automated technique to quality control radar reflectivity data. J. Appl. Meteor. Climatol., 46, 288305.

    • Search Google Scholar
    • Export Citation
  • Lin, X., and Hou A. Y. , 2008: Evaluation of coincident passive microwave rainfall estimates using TRMM PR and ground measurements as references. J. Appl. Meteor. Climatol., 47, 31703187.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., Iguchi T. , Kozu T. , Liao L. , Okamoto K. , Jones J. A. , and Kwiatkowski J. , 2000: Use of the surface reference technique for path attenuation estimates from the TRMM precipitation radar. J. Appl. Meteor., 39, 20532070.

    • Search Google Scholar
    • Export Citation
  • Meneghini, R., Jones J. A. , Iguchi T. , Okamoto K. , and Kwiatkowski J. , 2004: A hybrid surface reference technique and its application to the TRMM precipitation radar. J. Atmos. Oceanic Technol., 21, 16451658.

    • Search Google Scholar
    • Export Citation
  • Michaelides, S., 2008: Precipitation: Advances in Measurement, Estimation and Prediction. Springer-Verlag, 540 pp.

  • Rigby, R. A., and Stasinopoulos D. M. , 2001: The GAMLSS project: A flexible approach to statistical modelling. New Trends in Statistical Modeling: Proceedings of the 16th International Workshop on Statistical Modelling, B. Klein and L. Korsholm, Eds., Statistical Modelling Society, 249–256.

  • Rigby, R. A., and Stasinopoulos D. M. , 2005: Generalized additive models for location, scale and shape (with discussion). Appl. Stat., 54, 507554.

    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., and Arkin P. A. , 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149166.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and Houze R. A. Jr., 2000: Comparison of radar data from the TRMM satellite and Kwajalein oceanic validation site. J. Appl. Meteor., 39, 21512164.

    • Search Google Scholar
    • Export Citation
  • Stasinopoulos, D. M., and Rigby R. A. , 2007: Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Software, 23, 164.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., Arkin P. , Ebert E. E. , and Sapiano M. R. P. , 2008: Evaluating high resolution precipitation products. Bull. Amer. Meteor. Soc., 89, 19111916.

    • Search Google Scholar
    • Export Citation
  • Ushio, T., and Coauthors, 2006: A combined microwave and infrared radiometer approach for a high resolution global precipitation mapping in the GSMAP project Japan. Third Int. Precipitation Working Group Workshop on Precipitation Measurements, Melbourne, Australia, Bureau of Meteorology 33 pp. [Available online at http://www.isac.cnr.it/~ipwg/meetings/melbourne-2006/melbourne2006-pres.html.]

  • Vasiloff, S., and Coauthors, 2007: Improving QPE and very short term QPF: An initiative for a community-wide integrated approach. Bull. Amer. Meteor. Soc., 88, 18991911.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and Krajewski W. , 2010: Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys., 31, 107129.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., and Fisher B. L. , 2008: Comparisons of instantaneous TRMM ground validation and satellite rain-rate estimates at different spatial scales. J. Appl. Meteor. Climatol., 47, 22152237.

    • Search Google Scholar
    • Export Citation
  • Wolff, D. B., and Fisher B. L. , 2009: Assessing the relative performance of microwave-based satellite rain-rate retrievals using TRMM ground validation data. J. Appl. Meteor. Climatol., 48, 10691099.

    • Search Google Scholar
    • Export Citation
  • Yang, S., Olson W. S. , Wang J. J. , Bell T. L. , Smith E. A. , and Kummerow C. D. , 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry. Part II: Evaluation of estimates using independent data. J. Appl. Meteor. Climatol., 45, 721739.

    • Search Google Scholar
    • Export Citation
  • Zeweldi, D. A., and Gebremichael M. , 2009: Sub-daily scale validation of satellite-based high-resolution rainfall products. Atmos. Res., 92, 427433, doi:10.1016/j.atmosres.2009.01.001.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Howard K. , and Gourley J. J. , 2005: Constructing three- dimensional multiple radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22, 3042.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and multi-sensor QPE (NMQ) system: Description, results and future plans. Bull. Amer. Meteor. Soc., 92, 13211338.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Qi Y. , Langston C. , and Kaney B. , 2012: Radar Quality Index (RQI)—A combined measure for beam blockage and VPR effects in a national network. Weather Radar and Hydrology, Moore R. J., S. J. Cole, and A. J. Illingworth, Eds., IAHS Publ. 351, 388–393.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 444 145 20
PDF Downloads 299 95 13