Hydrological Climate Change Impact Analysis for the Figeh Spring near Damascus, Syria

Gerhard Smiatek Atmospheric Environmental Research, Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany

Search for other papers by Gerhard Smiatek in
Current site
Google Scholar
PubMed
Close
,
Severin Kaspar Institute for Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Severin Kaspar in
Current site
Google Scholar
PubMed
Close
, and
Harald Kunstmann Atmospheric Environmental Research, Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, and Institute for Geography, University of Augsburg, Augsburg, Germany

Search for other papers by Harald Kunstmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A set of downscaled climate change data from transient experiments with regional climate models has been used to access the future climate change signal in the area of the Figeh spring system in Syria and its potential effects on future water availability. The data ensemble at a spatial resolution of 0.25° has been investigated for the period 1961–90 for present-day climate and the periods 2021–50 and 2070–99 for future climate. The focus is on changes to annual, seasonal, and monthly surface air temperature and precipitation. For the first time, the Figeh spring discharge has been assessed with a hydrological runoff model based on an artificial neural network (ANN) approach. The ANN model was formulated and validated for the years 1987–2007, applying daily meteorological driving data. The investigations show that water supply from the spring might face serious problems under changed climate conditions. An expected, a precipitation decrease of about −11% in winter and −8% in spring, together with increased temperatures of up to +1.6°C and a significant decrease in snow mass, can substantially limit the water recharge potential already in the near future until 2050. In the period 2070–99, the annual precipitation amount is simulated to decrease by −22% and the annual mean temperature to increase by +4°C, relative to the 1961–90 mean. The ensemble mean of the relative change in mean discharge reveals a decrease during the peak flow from March to May, with values up to −20% in 2021–50 and almost −50% in the period 2069–98, both related to the 1961–90 mean.

Corresponding author address: Gerhard Smiatek, IMK-IFU, Karlsruhe Institute of Technology, Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany. E-mail: gerhard.smiatek@kit.edu

Abstract

A set of downscaled climate change data from transient experiments with regional climate models has been used to access the future climate change signal in the area of the Figeh spring system in Syria and its potential effects on future water availability. The data ensemble at a spatial resolution of 0.25° has been investigated for the period 1961–90 for present-day climate and the periods 2021–50 and 2070–99 for future climate. The focus is on changes to annual, seasonal, and monthly surface air temperature and precipitation. For the first time, the Figeh spring discharge has been assessed with a hydrological runoff model based on an artificial neural network (ANN) approach. The ANN model was formulated and validated for the years 1987–2007, applying daily meteorological driving data. The investigations show that water supply from the spring might face serious problems under changed climate conditions. An expected, a precipitation decrease of about −11% in winter and −8% in spring, together with increased temperatures of up to +1.6°C and a significant decrease in snow mass, can substantially limit the water recharge potential already in the near future until 2050. In the period 2070–99, the annual precipitation amount is simulated to decrease by −22% and the annual mean temperature to increase by +4°C, relative to the 1961–90 mean. The ensemble mean of the relative change in mean discharge reveals a decrease during the peak flow from March to May, with values up to −20% in 2021–50 and almost −50% in the period 2069–98, both related to the 1961–90 mean.

Corresponding author address: Gerhard Smiatek, IMK-IFU, Karlsruhe Institute of Technology, Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany. E-mail: gerhard.smiatek@kit.edu
Save
  • Al-Qinna, M., Hammouri N. , Obeidat M. , and Ahmad F. , 2011: Drought analysis in Jordan under current and future climates. Climatic Change, 106, 421440, doi:10.1007/s10584-010-9954-y.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., Adam J. C. , and Lettenmaier D. P. , 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, doi:10.1038/nature04141.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., Chin H.-N. , Bader D. , and Bala G. , 2009: Evaluation of a WRF dynamical downscaling simulation over California. Climatic Change, 95, 499521, doi:10.1007/s10584-009-9583-5.

    • Search Google Scholar
    • Export Citation
  • Christensen, J., Kjellström E. , Giorgi F. , Lenderink G. , and Rummukainen M. , 2010: Weight assignment in regional climate models. Climate Res., 44, 179194.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., 2007: Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Global Planet. Change, 57, 1626, doi:10.1016/j.gloplacha.2006.11.030.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., 2009: Temperature and precipitation probability density functions in ENSEMBLES regional scenarios. ENSEMBLES Tech. Rep. 5, 63 pp.

  • Déqué, M., and Somot S. , 2010: Weighted frequency distributions express modelling uncertainties in the ENSEMBLES regional climate experiments. Climate Res., 44, 195209, doi:10.3354/cr00866.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev., 121, 14931513.

    • Search Google Scholar
    • Export Citation
  • Evans, J. P., 2009: 21st century climate change in the Middle East. Climatic Change, 92, 417432, doi:10.1007/s10584-008-9438-5.

  • Evans, J. P., Smith R. B. , and Oglesby R. J. , 2004: Middle East climate simulations and dominant precipitation processes. Int. J. Climatol., 24, 16711694, doi:10.1002/joc.1084.

    • Search Google Scholar
    • Export Citation
  • Fleury, P., Plagnes V. , and Bakalowicz M. , 2007: Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse (south of France). J. Hydrol., 345, 3849, doi:10.1016/j.jhydrol.2007.07.014.

    • Search Google Scholar
    • Export Citation
  • Gao, X., Pal J. S. , and Giorgi F. , 2006: Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophys. Res. Lett., 33, L03706, doi:10.1029/2005GL024954.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Lionello P. , 2008: Climate change projections for the Mediterranean region. Global Planet. Change, 63, 90104, doi:10.1016/j.gloplacha.2007.09.005.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., Bi X. , and Pal J. S. , 2004: Mean, interannual variability and trends in a regional climate change experiment over Europe. I. Present-day climate (1961–1990). Climatic Change, 22, 733756, doi:10.1007/s00382-004-0409-x.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., Ruedy R. , Sato M. , and Lo K. , 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

  • Haylock, M. R., Hofstra N. , Klein Tank A. M. G. , Klok E. J. , Jones P. D. , and New M. , 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation for 1950–2006. J. Geophys. Res., 113, D20119, doi:10.1029/2008JD010201.

    • Search Google Scholar
    • Export Citation
  • Heckl, A., 2011: Impact of climate change on the water availability in the near east and the upper Jordan River catchment. Ph.D. thesis, University of Augsburg, 181 pp. [Available online at http://opus.bibliothek.uni-augsburg.de/opus4/files/1603/dissertation_heckl.pdf.]

  • Hertig, E., and Jacobeit J. , 2008: Downscaling future climate change: Temperature scenarios for the Mediterranean area. Global Planet. Change, 63, 127131.

    • Search Google Scholar
    • Export Citation
  • Hu, C., Hao Y. , Yeh T. , Pang B. , and Wu Z. , 2008: Simulation of spring flows from a karst aquifer with an artificial neural network. Hydrol. Processes, 22, 596604.

    • Search Google Scholar
    • Export Citation
  • Kafle, H., and Bruins H. , 2009: Climatic trends in Israel 1970–2002: Warmer and increasing aridity inland. Climatic Change, 96, 6377, doi:10.1007/s10584-009-9578-2.

    • Search Google Scholar
    • Export Citation
  • Kattan, Z., 1997: Environmental isotope study of the major karst springs in Damascus limestone aquifer systems: Case of the Figeh and Barada springs. J. Hydrol., 193, 161182, doi:10.1016/S0022-1694(96)03137-X.

    • Search Google Scholar
    • Export Citation
  • Klein Tank, A., Manzini E. , Braconnot P. , Doblas-Reyes F. , Buishand T. , and Morse A. , 2009: Evaluation of the ENSEMBLES prediction system. ENSEMBLES—Climate change and its impacts: Summary of research and results from the ENSEMBLES project, Final Rep., P. Van der Linden and J. Mitchell, Eds., Met Office Hadley Centre, Exeter, UK, 95–106. [Available online at http://ensembles-eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf.]

  • Knutti, R., Furrer R. , Tebaldi C. , Cermak J. , and Meehl G. A. , 2010: Challenges in combining projections from multiple climate models. J. Climate, 23, 27392758.

    • Search Google Scholar
    • Export Citation
  • Kunstmann, H., Heckl A. , and Rimmer A. , 2006: Physically based distributed hydrological modelling of the upper Jordan catchment and investigation of effective model equations. Adv. Geosci., 9, 123130.

    • Search Google Scholar
    • Export Citation
  • Kunstmann, H., Suppan P. , Heckl A. , and Rimmer A. , 2007: Regional climate change in the Middle East and impact on hydrology in the upper Jordan catchment. IAHS Publ., 313, 141149.

    • Search Google Scholar
    • Export Citation
  • Kurtulus, B., and Razack M. , 2010: Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy. J. Hydrol., 381, 101111.

    • Search Google Scholar
    • Export Citation
  • LaMoreaux, P. E., Hughes T. H. , Memon B. A. , and Lineback N. , 1989: Hydrogeologic assessment—Figeh spring, Damascus, Syria. Environ. Geol. Water Sci., 13, 73127, doi:10.1007/BF01664696.

    • Search Google Scholar
    • Export Citation
  • Lionello, P., and Giorgi F. , 2007: Winter precipitation and cyclones in the Mediterranean region: Future climate scenarios in a regional simulation. Adv. Geosci., 12, 153158.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., Zeng N. , Yoon J. , Artale V. , Navarra A. , Alpert P. , and Li L. , 2008: Mediterranean water cycle changes: Transition to drier 21st century conditions in observations and CMIP3 simulation. Environ. Res. Lett., 3, 044001, doi:10.1088/1748-9326/3/4/044001.

    • Search Google Scholar
    • Export Citation
  • Meslmani, Y., 2009: Vulnerability assessment and adaptation measures to climate change in Syria. Final Rep., General Commission of Environmental Affairs, Damascus, Syria, 54 pp. [Available online at http://static.weadapt.org/placemarks/files/584/4dda6010f2e17INC-SY_V&A_General_Assessment_-En.pdf.]

  • Murphy, J. M., Sexton D. M. H. , Barnett D. N. , Jones G. S. , Webb M. J. , Collins M. , and Stainforth D. A. , 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772, doi:10.1038/nature02771.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and Swart R. , Eds., 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • Ohmura, A., and Wild M. , 2002: Is the hydrological cycle accelerating? Science, 298, 13451346, doi:10.1126/science.1078972.

  • Önol, B., and Semazzi F. H. M. , 2009: Regionalization of climate change simulations over the eastern Mediterranean. J. Climate, 22, 19441961.

    • Search Google Scholar
    • Export Citation
  • Pöhler, H. A., 2006: Anpassung von WaSiM-ETH und die Erstellung und Berechnung von Landnutzungs- und Klimaszenarien für die Niederschlag-Abfluss-Modellierung am Biespiel des Osterzgebirges. Ph.D. thesis, Technische Universität Bergakademie Freiberg, 134 pp. [Available online at http://www.wasklim.de/download/Dissertation_Poehler.pdf.]

  • Rowell, D. P., 2005: A scenario of European climate change for the late twenty-first century: Seasonal means and interannual variability. Climate Dyn., 25, 837849, doi:10.1007/s00382-005-0068-6.

    • Search Google Scholar
    • Export Citation
  • Samuels, R., Smiatek G. , Krichak S. , Kunstmann H. , and Alpert P. , 2011: Extreme value indicators in highly resolved climate change simulations for the Jordan River area. J. Geophys. Res., 116, D24123, doi:10.1029/2011JD016322.

    • Search Google Scholar
    • Export Citation
  • Schulla, J., and Jasper K. , 2007: Model description WaSiM-ETH. Tech. Rep., Institute for Geography, ETH Zürich, 181 pp.

  • Smadi, M., and Zghoul A. , 2006: A sudden change in rainfall characteristics in Amman, Jordan during the mid 1950s. Amer. J. Environ. Sci., 2, 8491.

    • Search Google Scholar
    • Export Citation
  • Smiatek, G., Kunstmann H. , and Heckl A. , 2011: High-resolution climate change simulations for the Jordan River area. J. Geophys. Res., 116, D16111, doi:10.1029/2010JD015313.

    • Search Google Scholar
    • Export Citation
  • Soltani, S., Saboohi R. , and Yaghmaei L. , 2012: Rainfall and rainy days trend in Iran. Climatic Change, 110, 187213, doi:10.1007/s10584-011-0146-1.

    • Search Google Scholar
    • Export Citation
  • Somot, S., Sevault F. , Déqué M. , and Crépon M. , 2008: 21st century climate change scenario for the Mediterranean using a coupled atmosphere–ocean regional climate model. Global Planet. Change, 63, 112126, doi:10.1016/j.gloplacha.2007.10.003.

    • Search Google Scholar
    • Export Citation
  • Sowers, J., Vengosh A. , and Weinthal E. , 2011: Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Climatic Change, 104, 599627, doi:10.1007/s10584-010-9835-4.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and Forest C. E. , 2007: Ensemble climate predictions using climate models and observational constraints. Philos. Trans. Roy. Soc. London, 365A, 20292052, doi:10.1098/rsta.2007.2075.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and Knutti R. , 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc. London, 365A, 20532075, doi:10.1098/rsta.2007.2076.

    • Search Google Scholar
    • Export Citation
  • Trichakis, I., Nikolos I. , and Karatzas G. , 2011: Artificial neural network (ANN) based modeling for karstic groundwater level simulation. Water Resour. Manage., 25, 11431152.

    • Search Google Scholar
    • Export Citation
  • Trigo, R. M., Gouveia C. M. , and Barriopedro D. , 2010: The intense 2007–2009 drought in the Fertile Crescent: Impacts and associated atmospheric circulation. Agric. For. Meteor., 150, 12451257, doi:10.1016/j.agrformet.2010.05.006.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., Knutti R. , Liniger M. A. , and Appenzeller C. , 2010: Risks of model weighting in multimodel climate projections. J. Climate, 23, 41754191.

    • Search Google Scholar
    • Export Citation
  • Xoplaki, E., González-Rouco J. F. , Luterbacher J. , and Wanner H. , 2004: Wet season Mediterranean precipitation variability: Influence of large-scale dynamics and trends. Climate Dyn., 23, 6378, doi:10.1007/s00382-004-0422-0.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 371 132 3
PDF Downloads 247 74 3