Evaluation of the CLM4 Lake Model at a Large and Shallow Freshwater Lake

Bin Deng Yale–NUIST Center on Atmospheric Environment, Nanjing University of Information, Science and Technology, Nanjing, China, and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut

Search for other papers by Bin Deng in
Current site
Google Scholar
PubMed
Close
,
Shoudong Liu Yale–NUIST Center on Atmospheric Environment, Nanjing University of Information, Science and Technology, Nanjing, China

Search for other papers by Shoudong Liu in
Current site
Google Scholar
PubMed
Close
,
Wei Xiao Yale–NUIST Center on Atmospheric Environment, Nanjing University of Information, Science and Technology, Nanjing, China

Search for other papers by Wei Xiao in
Current site
Google Scholar
PubMed
Close
,
Wei Wang Yale–NUIST Center on Atmospheric Environment, Nanjing University of Information, Science and Technology, Nanjing, China

Search for other papers by Wei Wang in
Current site
Google Scholar
PubMed
Close
,
Jiming Jin Department of Watershed Sciences, Utah State University, Logan, Utah

Search for other papers by Jiming Jin in
Current site
Google Scholar
PubMed
Close
, and
Xuhui Lee Yale–NUIST Center on Atmospheric Environment, Nanjing University of Information, Science and Technology, Nanjing, China, and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut

Search for other papers by Xuhui Lee in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Models of lake physical processes provide the lower flux boundary conditions for numerical predictions of weather and climate in lake basins. So far, there have been few studies on evaluating lake model performance at the diurnal time scale and against flux observations. The goal of this paper is to evaluate the National Center for Atmospheric Research Community Land Model version 4–Lake, Ice, Snow and Sediment Simulator using the eddy covariance and water temperature data obtained at a subtropical freshwater lake, Lake Taihu, in China. Both observations and model simulations reveal that convective overturning was commonplace at night and timed when water switched from being statically stable to being unstable. By reducing the water thermal diffusivity to 2% of the value calculated with the Henderson–Sellers parameterization, the model was able to reproduce the observed diurnal variations in water surface temperature and in sensible and latent heat fluxes. The small diffusivity suggests that the drag force of the sediment layer in this large (2500 km2) and shallow (2-m depth) lake may be strong, preventing unresolved vertical motions and suppressing wind-induced turbulence. Model results show that a large fraction of the incoming solar radiation energy was stored in the water during the daytime, and the stored energy was diffused upward at night to sustain sensible and latent heat fluxes to the atmosphere. Such a lake–atmosphere energy exchange modulated the local climate at the daily scale in this shallow lake, which is not seen in deep lakes where dominant lake–atmosphere interactions often occur at the seasonal scale.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-12-067.s1.

Corresponding author address: Xuhui Lee, School of Forestry and Environmental Studies, Yale University, 195 Prospect St., New Haven, CT 06511. E-mail: xuhui.lee@yale.edu

Abstract

Models of lake physical processes provide the lower flux boundary conditions for numerical predictions of weather and climate in lake basins. So far, there have been few studies on evaluating lake model performance at the diurnal time scale and against flux observations. The goal of this paper is to evaluate the National Center for Atmospheric Research Community Land Model version 4–Lake, Ice, Snow and Sediment Simulator using the eddy covariance and water temperature data obtained at a subtropical freshwater lake, Lake Taihu, in China. Both observations and model simulations reveal that convective overturning was commonplace at night and timed when water switched from being statically stable to being unstable. By reducing the water thermal diffusivity to 2% of the value calculated with the Henderson–Sellers parameterization, the model was able to reproduce the observed diurnal variations in water surface temperature and in sensible and latent heat fluxes. The small diffusivity suggests that the drag force of the sediment layer in this large (2500 km2) and shallow (2-m depth) lake may be strong, preventing unresolved vertical motions and suppressing wind-induced turbulence. Model results show that a large fraction of the incoming solar radiation energy was stored in the water during the daytime, and the stored energy was diffused upward at night to sustain sensible and latent heat fluxes to the atmosphere. Such a lake–atmosphere energy exchange modulated the local climate at the daily scale in this shallow lake, which is not seen in deep lakes where dominant lake–atmosphere interactions often occur at the seasonal scale.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-12-067.s1.

Corresponding author address: Xuhui Lee, School of Forestry and Environmental Studies, Yale University, 195 Prospect St., New Haven, CT 06511. E-mail: xuhui.lee@yale.edu
Save
  • An, S., and Wang R. , 2008: Human-induced drivers of the development of Lake Taihu. Lectures on China’s Environment, X. Lee, Ed., Yale School of Forestry and Environmental Studies Publication Series, Vol. 20, Yale School of Forestry and Environmental Studies, 151–165.

  • Battin, T. J., Luyssaert S. , Kaplan L. A. , Aufdenkampe A. K. , Richter A. , and Tranvik L. J. , 2009: The boundless carbon cycle. Nat. Geosci., 2, 598600.

    • Search Google Scholar
    • Export Citation
  • Benoit, G., and Hemond H. F. , 1996: Vertical eddy diffusion calculated by the flux gradient method: Significance of sediment-water heat exchange. Limnol. Oceanogr., 41, 157168.

    • Search Google Scholar
    • Export Citation
  • Blanken, P. D., and Coauthors, 2000: Eddy covariance measurements of evaporation from Great Slave Lake, Northwest Territories, Canada. Water Resour. Res., 36, 10691077.

    • Search Google Scholar
    • Export Citation
  • Blanken, P. D., Rouse W. R. , and Schertzer W. M. , 2003: Enhancement of evaporation from a large northern lake by the entrainment of warm, dry air. J. Hydrometeor., 4, 680693.

    • Search Google Scholar
    • Export Citation
  • Blanken, P. D., Spence C. , Hedstrom N. , and Lenters J. D. , 2011: Evaporation from Lake Superior: 1. Physical controls and processes. J. Great Lakes Res., 37, 707716.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 1995: Sensitivity of a GCM simulation to inclusion of inland water surfaces. J. Climate, 8, 26912704.

  • Boyce, F. M., Hamblin P. F. , Harvey L. D. D. , Schertzer W. M. , and McCrimmon R. C. , 1993: Response of the thermal structure of Lake Ontario to deep cooling water withdrawals and to global warming. J. Great Lakes Res., 19, 603616.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., and Baumert H. , 1995: On the performance of a mixed-layer model based on the κ-ɛ turbulent closure. J. Geophys. Res., 100, 85238540.

    • Search Google Scholar
    • Export Citation
  • Cole, J. J., and Caraco N. F. , 1998: Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr., 43, 647656.

    • Search Google Scholar
    • Export Citation
  • Cole, J. J., and Coauthors, 2007: Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10, 171184.

    • Search Google Scholar
    • Export Citation
  • Desai, A. R., Austin J. A. , Bennnington V. , and McKinley G. A. , 2009: Stronger winds over a large lake in response to weakening air-to-lake temperature gradient. Nat. Geosci., 2, 855858.

    • Search Google Scholar
    • Export Citation
  • Downing, J. A., and Coauthors, 2006: The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr., 51, 23882397.

    • Search Google Scholar
    • Export Citation
  • Downing, J. A., and Coauthors, 2008: Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Global Biogeochem. Cycles, 22, GB1018, doi:10.1029/2006GB002854.

    • Search Google Scholar
    • Export Citation
  • Fang, X., and Stefan H. G. , 1998: Temperature variability in lake sediments. Water Resour. Res., 34, 717729.

  • Frew, N. M., and Coauthors, 2004: Air-sea gas transfer: Its dependence on wind stress, small-scale roughness, and surface films. J. Geophys. Res., 109, C08S17, doi:10.1029/2003JC002131.

    • Search Google Scholar
    • Export Citation
  • Goudsmit, G. H., Burchard H. , Peeters F. , and Wuest A. , 2002: Application of k-ɛ turbulence models to enclosed basins: The role of internal seiches. J. Geophys. Res., 107, 3230, doi:10.1029/2001JC000954.

    • Search Google Scholar
    • Export Citation
  • Heikinheimo, M., Kangas M. , Tourula T. , Venäläinen A. , and Tattari S. , 1999: Momentum and heat fluxes over lakes Tämnaren and Råksjö determined by the bulk-aerodynamic and eddy-correlation methods. Agric. For. Meteor., 98–99, 521534.

    • Search Google Scholar
    • Export Citation
  • Henderson-Sellers, B., 1985: New formulation of eddy diffusion thermocline models. Appl. Math. Modell., 9, 441446.

  • Herb, W. R., and Stefan H. G. , 2005: Dynamics of vertical mixing in a shallow lake with submersed macrophytes. Water Res. Res.,41, W02023, doi:10.1029/2003WR002613.

  • Hostetler, S. W., and Bartlein P. J. , 1990: Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake, Oregon. Water Resour. Res., 26, 26032612.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., Bates G. T. , and Giorgi F. , 1993: Interactive coupling of a lake thermal model with a regional climate model. J. Geophys. Res., 98, 50455057.

    • Search Google Scholar
    • Export Citation
  • Hostetler, S. W., Giorgi F. , Bates G. T. , and Bartlein P. J. , 1994: Lake-atmosphere feedbacks associated with paleolakes Bonneville and Lahontan. Science, 263, 665668.

    • Search Google Scholar
    • Export Citation
  • Huang, C. C., Li Y. M. , Le C. F. , Sun D. Y. , Wu L. , Wang L. Z. , and Wang X. , 2009: Seasonal characteristics of the diffuse attenuation coefficient of Meiliang Bay waters and its primary contributors. Acta Ecol. Sin., 29, 32953306.

    • Search Google Scholar
    • Export Citation
  • Imberger, J., Patterson J. , Hebbert B. , and Loh I. , 1978: Dynamics of reservoir of medium size. J. Hydraul. Div., 104, 725743.

  • Krinner, G., 2003: Impact of lakes and wetlands on boreal climate. J. Geophys. Res., 108, 4520, doi:10.1029/2002JD002597.

  • Laird, N. F., and Kristovich D. A. R. , 2002: Variations of sensible and latent heat fluxes from a Great Lakes buoy and associated synoptic weather patterns. J. Hydrometeor., 3, 312.

    • Search Google Scholar
    • Export Citation
  • Lenters, J. D., Kratz T. K. , and Bowser C. J. , 2005: Effects of climate variability on lake evaporation: Results from a long-term energy budget study of Sparkling Lake, northern Wisconsin (USA). J. Hydrol., 308, 168195.

    • Search Google Scholar
    • Export Citation
  • Liss, P. S., 1973: Processes of gas exchange across an air-water interface. Deep-Sea Res., 20, 221238.

  • Liu, H., Zhang Y. , Liu S. , Jiang H. , Sheng L. , and Williams Q. L. , 2009: Eddy covariance measurements of surface energy budget and evaporation in a cool season over southern open water in Mississippi. J. Geophys. Res.,114, D04110, doi:10.1029/2008JD010891.

  • Liu, H., Blanken P. D. , Weidinger T. , Nordbo A. , and Vesala T. , 2011: Variability in cold front activities modulating cool-season evaporation from a southern inland water in the USA. Environ. Res. Lett., 6, 024022, doi:10.1088/1748-9326/6/2/024022.

    • Search Google Scholar
    • Export Citation
  • Lofgren, B. M., 1997: Simulated effects of idealized Laurentian Great Lakes on regional and large-scale climate. J. Climate, 10, 28472858.

    • Search Google Scholar
    • Export Citation
  • Long, Z., Perrie W. , Gyakum J. , Caya D. , and Laprise R. , 2007: Northern lake impacts on local seasonal climate. J. Hydrometeor., 8, 881896.

    • Search Google Scholar
    • Export Citation
  • MacKay, M. D., and Coauthors, 2009: Modeling lakes and reservoirs in the climate system. Limnol. Oceanogr., 54, 23152329.

  • Martynov, A., Sushama L. , and Laprise R. , 2010: Simulation of temperate freezing lakes by one-dimensional lake models: Performance assessment for interactive coupling with regional climate models. Boreal Environ. Res., 15, 143164.

    • Search Google Scholar
    • Export Citation
  • Mironov, D. V., 2008: Parameterization of lakes in numerical weather prediction: Description of a lake model. COSMO Tech. Rep. 11, Deutscher Wetterdienst, Offenbach am Main, Germany, 41 pp.

  • Nordbo, A., Launiainen S. , Mammarella I. , Lepparanta M. , Huotari J. , Ojala A. , and Vesala T. , 2011: Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. J. Geophys. Res., 116, D02119, doi:10.1029/2010JD014542.

    • Search Google Scholar
    • Export Citation
  • Oesch, D. C., Jaquet J.-M. , Hauser A. , and Wunderle S. , 2005: Lake surface water temperature retrieval using advanced very high resolution radiometer and Moderate Resolution Imaging Spectroradiometer data: Validation and feasibility study. J. Geophys. Res., 110, C12014, doi:10.1029/2004JC002857.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical description of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN 461+STR, 174 pp. [Available online at http://nldr.library.ucar.edu/repository/assets/technotes/asset-000-000-000-537.pdf.]

  • Peeters, F., Livingstone D. M. , Goudsmit G. H. , Kipfer R. , and Forster R. , 2002: Modeling 50 years of historical temperature profiles in a large central European lake. Limnol. Oceanogr., 47, 186197.

    • Search Google Scholar
    • Export Citation
  • Pegau, W. S., Gray D. , and Zaneveld J. R. V. , 1997: Absorption and attenuation of visible and near-infrared light in water: Dependence on temperature and salinity. Appl. Opt., 36, 60356046.

    • Search Google Scholar
    • Export Citation
  • Perroud, M., Goyette S. , Martynov A. , Beniston M. , and Anneville O. , 2009: Simulation of multiannual thermal profiles in deep Lake Geneva: A comparison of one-dimensional lake models. Limnol. Oceanogr., 54, 15741594.

    • Search Google Scholar
    • Export Citation
  • Rouse, W. R., Blanken P. D. , Bussieres N. , Oswald C. J. , Schertzer W. M. , Spence C. , and Walker A. E. , 2008: Investigation of the thermal and energy balance regimes of Great Slave and Great Bear Lakes. J. Hydrometeor., 9, 13181333.

    • Search Google Scholar
    • Export Citation
  • Samuelsson, P., and Tjernström M. , 2001: Mesoscale flow modification induced by land-lake surface temperature and roughness differences. J. Geophys. Res., 106, 12 41912 435.

    • Search Google Scholar
    • Export Citation
  • Samuelsson, P., Kourzeneva E. , and Mironov D. , 2010: The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environ. Res., 15, 113129.

    • Search Google Scholar
    • Export Citation
  • Shen, J., Yuan H. , Liu E. , Wang J. , and Wang Y. , 2011: Spatial distribution and stratigraphic characteristics of surface sediments in Taihu Lake, China. Chin. Sci. Bull., 56, 179187.

    • Search Google Scholar
    • Export Citation
  • Spence, C., Blanken P. D. , Hedstrom N. , Fortin V. , and Wilson H. , 2011: Evaporation from Lake Superior: 2. Spatial distribution and variability. J. Great Lakes Res., 37, 717724.

    • Search Google Scholar
    • Export Citation
  • Stepanenko, V. M., and Lykosov V. N. , 2005: Numerical simulation of heat and moisture transport in the “lake-soil” system. Russ. J. Meteor. Hydrol., 3, 95104.

    • Search Google Scholar
    • Export Citation
  • Stepanenko, V. M., Goyette S. , Martynov A. , Perroud M. , Fang X. , and Mironov D. , 2010: First steps of a lake model intercomparison project: LakeMIP. Boreal Environ. Res., 15, 191202.

    • Search Google Scholar
    • Export Citation
  • Subin, Z. M., Murphy L. N. , Li F. , Bonfils C. , and Riley W. J. , 2012a: Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: Analyses in the Community Earth System Model 1 (CESM1). Tellus, 64A, 15639, doi:10.3402/tellusa.v64i0.15639.

    • Search Google Scholar
    • Export Citation
  • Subin, Z. M., Riley W. J. , and Mironov D. V. , 2012b: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J. Adv. Model. Earth Syst.,4, M02001, doi:10.1029/2011MS000072.

  • Törnblom, K., Bergström H. , and Johansson C. , 2007: Thermally driven mesoscale flows—Simulations and measurements. Boreal Environ. Res., 12, 623641.

    • Search Google Scholar
    • Export Citation
  • Tranvik, L. J., and Coauthors, 2009: Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr., 54, 22982314.

    • Search Google Scholar
    • Export Citation
  • Vesala, T., Huotari J. , Rannik Ü. , Suni T. , Smolander S. , Sogachev A. , Launiainen S. , and Ojala A. , 2006: Eddy covariance measurements of carbon exchange and latent and sensible heat fluxes over a boreal lake for a full open-water period. J. Geophys. Res., 111, D11101, doi:10.1029/2005JD006365.

    • Search Google Scholar
    • Export Citation
  • Voros, M., Istvanovics V. , and Weidinger T. , 2010: Applicability of the FLake model to Lake Balaton. Boreal Environ. Res., 15, 245254.

    • Search Google Scholar
    • Export Citation
  • Wang, M., Shi W. , and Tang J. , 2011: Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements. Remote Sens. Environ., 115, 841854.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., and Coauthors, 1998: The project for intercomparison of land-surface parameterization schemes (PILPS) phase 2(c) Red–Arkansas River basin experiment: 1. Experimental description and summary intercomparisons. Global Planet. Change, 19, 115135.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., Shaikh M. , Dai Y. , Dickinson R. E. , and Myneni R. , 2002: Coupling of the Common Land Model to the NCAR Community Climate Model. J. Climate, 15, 18321854.

    • Search Google Scholar
    • Export Citation
  • Zhao, L., Jin J. , Wang S.-Y. , and Ek M. B. , 2012: Integration of remote-sensing data with WRF to improve lake-effect precipitation simulations over the Great Lakes region. J. Geophys. Res., 117, D09102, doi:10.1029/2011JD016979.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 661 213 10
PDF Downloads 513 149 5