Observed Impacts of Duration and Seasonality of Atmospheric-River Landfalls on Soil Moisture and Runoff in Coastal Northern California

F. M. Ralph Physical Sciences Division, NOAA/ESRL, Boulder, Colorado

Search for other papers by F. M. Ralph in
Current site
Google Scholar
PubMed
Close
,
T. Coleman Physical Sciences Division, NOAA/ESRL, and CIRES, Boulder, Colorado

Search for other papers by T. Coleman in
Current site
Google Scholar
PubMed
Close
,
P. J. Neiman Physical Sciences Division, NOAA/ESRL, Boulder, Colorado

Search for other papers by P. J. Neiman in
Current site
Google Scholar
PubMed
Close
,
R. J. Zamora Physical Sciences Division, NOAA/ESRL, Boulder, Colorado

Search for other papers by R. J. Zamora in
Current site
Google Scholar
PubMed
Close
, and
M. D. Dettinger Scripps Institution of Oceanography, University of California, San Diego, and U.S. Geological Survey, La Jolla, California

Search for other papers by M. D. Dettinger in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study is motivated by diverse needs for better forecasts of extreme precipitation and floods. It is enabled by unique hourly observations collected over six years near California’s Russian River and by recent advances in the science of atmospheric rivers (ARs). This study fills key gaps limiting the prediction of ARs and, especially, their impacts by quantifying the duration of AR conditions and the role of duration in modulating hydrometeorological impacts. Precursor soil moisture conditions and their relationship to streamflow are also shown. On the basis of 91 well-observed events during 2004–10, the study shows that the passage of ARs over a coastal site lasted 20 h on average and that 12% of the AR events exceeded 30 h. Differences in storm-total water vapor transport directed up the mountain slope contribute 74% of the variance in storm-total rainfall across the events and 61% of the variance in storm-total runoff volume. ARs with double the composite mean duration produced nearly 6 times greater peak streamflow and more than 7 times the storm-total runoff volume. When precursor soil moisture was less than 20%, even heavy rainfall did not lead to significant streamflow. Predicting which AR events are likely to produce extreme impacts on precipitation and runoff requires accurate prediction of AR duration at landfall and observations of precursor soil moisture conditions.

Corresponding author address: Dr. F. Martin Ralph, Physical Sciences Division, NOAA/ESRL, 325 Broadway, Boulder, CO 80305. E-mail: marty.ralph@noaa.gov

This article is included in the State of the Science of Precipitation special collection.

Abstract

This study is motivated by diverse needs for better forecasts of extreme precipitation and floods. It is enabled by unique hourly observations collected over six years near California’s Russian River and by recent advances in the science of atmospheric rivers (ARs). This study fills key gaps limiting the prediction of ARs and, especially, their impacts by quantifying the duration of AR conditions and the role of duration in modulating hydrometeorological impacts. Precursor soil moisture conditions and their relationship to streamflow are also shown. On the basis of 91 well-observed events during 2004–10, the study shows that the passage of ARs over a coastal site lasted 20 h on average and that 12% of the AR events exceeded 30 h. Differences in storm-total water vapor transport directed up the mountain slope contribute 74% of the variance in storm-total rainfall across the events and 61% of the variance in storm-total runoff volume. ARs with double the composite mean duration produced nearly 6 times greater peak streamflow and more than 7 times the storm-total runoff volume. When precursor soil moisture was less than 20%, even heavy rainfall did not lead to significant streamflow. Predicting which AR events are likely to produce extreme impacts on precipitation and runoff requires accurate prediction of AR duration at landfall and observations of precursor soil moisture conditions.

Corresponding author address: Dr. F. Martin Ralph, Physical Sciences Division, NOAA/ESRL, 325 Broadway, Boulder, CO 80305. E-mail: marty.ralph@noaa.gov

This article is included in the State of the Science of Precipitation special collection.

Save
  • Bao, J.-W., Michelson S. A. , Neiman P. J. , Ralph F. M. , and Wilczak J. M. , 2006: Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: Their formation and connection to tropical moisture. Mon. Wea. Rev., 134, 10631080.

    • Search Google Scholar
    • Export Citation
  • Carter, D. A., Gage K. S. , Ecklund W. L. , Angevine W. M. , Johnston P. E. , Riddle A. C. , Wilson J. S. , and Williams C. R. , 1995: Developments in UHF lower tropospheric wind profiling at NOAA’s Aeronomy Laboratory. Radio Sci., 30, 9971001.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M., 2011: Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc.,47, 514–523, doi:10.1111/j.1752-1688.2011.00546.x.

  • Dettinger, M., Ralph F. M. , Das T. , Neiman P. J. , and Cayan D. , 2011: Atmospheric rivers, floods, and the water resources of California. Water,3, 455–478.

  • Dettinger, M., and Coauthors 2012: Design and quantification of an extreme winter storm scenario for emergency preparedness and planning exercises in California. Nat. Hazards, 60, 10851111.

    • Search Google Scholar
    • Export Citation
  • Duan, J. M., and Coauthors, 1996: GPS meteorology: Direct estimation of the absolute value of precipitable water. J. Appl. Meteor., 35, 830838.

    • Search Google Scholar
    • Export Citation
  • Guan, B., Molotch N. P. , Waliser D. E. , Fetzer E. J. , and Neiman P. J. , 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, doi:10.1029/2010GL044696.

    • Search Google Scholar
    • Export Citation
  • Jankov, I., Bao J.-W. , Neiman P. J. , Schultz P. J. , Huiling Y. , and White A. B. , 2009: Evaluation and comparison of microphysical algorithms in ARW-WRF model simulations of atmospheric river events affecting the California coast. J. Hydrometeor., 10, 847870.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., Allan R. P. , Wood E. F. , Villarini G. , Brayshaw D. J. , and Wade A. J. , 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, doi:10.1029/2011GL049783.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Qian Y. , 2009: Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett., 36, L03820, doi:10.1029/2008GL036445.

    • Search Google Scholar
    • Export Citation
  • Mattioli, V., Westwater E. R. , Cimini C. , Liljegren J. S. , Lesht B. M. , Gutman S. I. , and Schmidlin F. J. , 2007: Analysis of radiosonde and ground-based remotely sensed PWV data from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment. J. Atmos. Oceanic Technol., 24, 415431.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., Neiman P. J. , Ralph F. M. , and Barthold F. , 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , White A. B. , Kingsmill D. A. , and Persson P. O. G. , 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Persson P. O. G. , Ralph F. M. , Jorgensen D. P. , White A. B. , and Kingsmill D. A. , 2004: Modification of fronts and precipitation by coastal blocking during an intense landfalling winter storm in Southern California: Observations during CALJET. Mon. Wea. Rev., 132, 242273.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Kuo Y.-H. , Wee T.-K. , Ma Z. , Taylor G. H. , and Dettinger M. D. , 2008a: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Lundquist J. , and Dettinger M. D. , 2008b: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the west coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., White A. B. , Ralph F. M. , Gottas D. J. , and Gutman S. I. , 2009: A water vapor flux tool for precipitation forecasting. Proc. Inst. Civ. Eng.: Water Manage., 162, 8394.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Sukovich E. M. , Ralph F. M. , and Hughes M. , 2010: A seven-year wind profiler–based climatology of the windward barrier jet along California’s northern Sierra Nevada. Mon. Wea. Rev., 138, 12061233.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Schick L. J. , Ralph F. M. , Hughes M. , and Wick G. A. , 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and Oort A. H. , 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Ralph, F. M., and Dettinger M. D. , 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Kingsmill D. E. , Persson P. O. G. , White A. B. , Strem E. T. , Andrews E. D. , and Antweiler R. C. , 2003: The impact of a prominent rain shadow on flooding in California’s Santa Cruz mountains: A CALJET case study and sensitivity to the ENSO cycle. J. Hydrometeor., 4, 12431264.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Wick G. A. , 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the El Niño winter of 1997/98. Mon. Wea. Rev., 132, 17211745.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2005: Improving short-term (0–48 hour) cool-season quantitative precipitation forecasting: Recommendations from a USWRP workshop. Bull. Amer. Meteor. Soc., 86, 16191632.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Wick G. A. , Gutman S. I. , Dettinger M. D. , Cayan D. R. , and White A. B. , 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Sukovich E. , Reynolds D. , Dettinger M. , Weagle S. , Clark W. , and Neiman P. J. , 2010: Assessment of extreme quantitative precipitation forecasts and development of regional extreme event thresholds using data from HMT-2006 and COOP observers. J. Hydrometeor., 11, 12881306.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Kiladis G. N. , Weickman K. , and Reynolds D. W. , 2011: A multi-scale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189.

    • Search Google Scholar
    • Export Citation
  • Smith, B. L., Yuter S. E. , Neiman P. J. , and Kingsmill D. E. , 2010: Water vapor fluxes and orographic precipitation over northern California associated with a land-falling atmospheric river. Mon. Wea. Rev., 138, 74100.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., Forster C. , and Sodemann H. , 2008: Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N—A tale of hurricanes and an atmospheric river. J. Geophys. Res., 113, D05102, doi:10.1029/2007JD009006.

    • Search Google Scholar
    • Export Citation
  • Viale, M., and Nuñez M. N. , 2011: Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J. Hydrometeor., 12, 481507.

    • Search Google Scholar
    • Export Citation
  • White, A. B., and Coauthors, 2012: NOAA’s rapid response to the Howard A. Hanson Dam flood risk management crisis. Bull. Amer. Meteor. Soc., 93, 189207.

    • Search Google Scholar
    • Export Citation
  • Zamora, R. J., Ralph F. M. , Clark E. , and Schneider T. , 2011: The NOAA Hydrometeorology Testbed soil moisture observing networks: Design, instrumentation, and preliminary results. J. Atmos. Oceanic Technol., 28, 11291140.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Newell R. E. , 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2040 673 54
PDF Downloads 1801 414 36