The Major Floods in the Amazonas River and Tributaries (Western Amazon Basin) during the 1970–2012 Period: A Focus on the 2012 Flood*

Jhan Carlo Espinoza Instituto Geofísico del Perú, and Universidad Agraria La Molina, Lima, Peru

Search for other papers by Jhan Carlo Espinoza in
Current site
Google Scholar
PubMed
Close
,
Josyane Ronchail Université Paris Diderot, Sorbonne Paris Cité, and Laboratoire d’Océanographie et de Climat: Expérimentation et Approches Numériques, Paris, France

Search for other papers by Josyane Ronchail in
Current site
Google Scholar
PubMed
Close
,
Frédéric Frappart Université de Toulouse, GET-OMP, and Groupe de Recherche en Géodésie Spatiale, Toulouse, France

Search for other papers by Frédéric Frappart in
Current site
Google Scholar
PubMed
Close
,
Waldo Lavado Servicio Nacional de Meteorología e Hidrología, and Universidad Agraria La Molina, Lima, Peru

Search for other papers by Waldo Lavado in
Current site
Google Scholar
PubMed
Close
,
William Santini Institut de Recherche pour le Développement, Lima, Peru, and Université de Toulouse, GET-OMP, Toulouse, France

Search for other papers by William Santini in
Current site
Google Scholar
PubMed
Close
, and
Jean Loup Guyot Institut de Recherche pour le Développement, Lima, Peru, and Université de Toulouse, GET-OMP, Toulouse, France

Search for other papers by Jean Loup Guyot in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this work, the authors analyze the origin of the extreme floods in the Peruvian Amazonas River during the 1970–2012 period, focusing on the recent April 2012 flooding (55 400 m3 s−1). Several hydrological variables, such as rainfall, terrestrial water storage, and discharge, point out that the unprecedented 2012 flood is mainly related to an early and abundant wet season over the north of the basin. Thus, the peak of the Marañón River, the northern contributor of the Amazonas, occurred sooner than usual (in April instead of May), coinciding with the peak of the Ucayali River, the southern contributor. This concomitance caused a dramatic flood downstream in the Peruvian Amazonas. These results are compared to the amplitude and timing of the three most severe extreme floods (1970–2011). The analysis of the climatic features related to the most important floods (1986, 1993, 1999, and 2012) suggests that they are characterized by a La Niña event, which originates a geopotential height wave train near the ground, with positive anomalies over the subtropical South and North Pacific and Atlantic and over southeastern South America. These patterns contribute to 1) the origin of an abundant humidity transport flux from the tropical North Atlantic and the Caribbean Sea toward the northwestern Amazon and 2) the maintenance of the monsoon flux over this region. They both favor a strong convergence of humidity in the northern Amazonas basin. Finally, the authors suggest that the intensity of floods is more likely related to an early La Niña event (as observed during the 2011/12 season), early rainfall, and simultaneous peaks of both tributaries of the Amazonas River.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-12-0100.s1.

Corresponding author address: Jhan Carlo Espinoza, Instituto Geofísico del Perú, Calle Badajoz 169, Urb. Mayorazgo IV Etapa, Ate Vitarte, Lima 03, Peru. E-mail: jhan-carlo.espinoza@igp.gob.pe

Abstract

In this work, the authors analyze the origin of the extreme floods in the Peruvian Amazonas River during the 1970–2012 period, focusing on the recent April 2012 flooding (55 400 m3 s−1). Several hydrological variables, such as rainfall, terrestrial water storage, and discharge, point out that the unprecedented 2012 flood is mainly related to an early and abundant wet season over the north of the basin. Thus, the peak of the Marañón River, the northern contributor of the Amazonas, occurred sooner than usual (in April instead of May), coinciding with the peak of the Ucayali River, the southern contributor. This concomitance caused a dramatic flood downstream in the Peruvian Amazonas. These results are compared to the amplitude and timing of the three most severe extreme floods (1970–2011). The analysis of the climatic features related to the most important floods (1986, 1993, 1999, and 2012) suggests that they are characterized by a La Niña event, which originates a geopotential height wave train near the ground, with positive anomalies over the subtropical South and North Pacific and Atlantic and over southeastern South America. These patterns contribute to 1) the origin of an abundant humidity transport flux from the tropical North Atlantic and the Caribbean Sea toward the northwestern Amazon and 2) the maintenance of the monsoon flux over this region. They both favor a strong convergence of humidity in the northern Amazonas basin. Finally, the authors suggest that the intensity of floods is more likely related to an early La Niña event (as observed during the 2011/12 season), early rainfall, and simultaneous peaks of both tributaries of the Amazonas River.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-12-0100.s1.

Corresponding author address: Jhan Carlo Espinoza, Instituto Geofísico del Perú, Calle Badajoz 169, Urb. Mayorazgo IV Etapa, Ate Vitarte, Lima 03, Peru. E-mail: jhan-carlo.espinoza@igp.gob.pe

Supplementary Materials

    • Supplemental Materials (ZIP 596.87 KB)
Save
  • Bruinsma, S., and Coauthors, 2010: CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv. Space Res., 45, 587601, doi:10.1016/j.asr.2009.10.012.

    • Search Google Scholar
    • Export Citation
  • Chen, J. L., Wilson C. R. , and Tapley D. B. , 2010: The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resour. Res., 46, W12526, doi:10.1029/2010WR009383.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., and Coauthors, 2008: Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature, 453, 212215.

  • Espinoza, J. C., and Coauthors, 2009: Contrasting regional discharge evolutions in the Amazon basin (1974–2004). J. Hydrol., 375, 297311.

    • Search Google Scholar
    • Export Citation
  • Espinoza, J. C., and Coauthors, 2011: Climate variability and extreme drought in the upper Solimões River (western Amazon basin): Understanding the exceptional 2010 drought. Geophys. Res. Lett., 38, L13406, doi:10.1029/2011GL047862.

    • Search Google Scholar
    • Export Citation
  • Espinoza, J. C., and Coauthors, 2012: From drought to flooding: Understanding the abrupt 2010–11 hydrological annual cycle in the Amazonas River and tributaries. Environ. Res. Lett., 7, 024008, doi:10.1088/1748-9326/7/2/024008.

    • Search Google Scholar
    • Export Citation
  • Frappart, F., and Coauthors, 2011a: Satellite-based estimates of groundwater storage variations in large drainage basins with extensive floodplains. Remote Sens. Environ., 115, 15881594, doi:10.1016/j.rse.2011.02.003.

    • Search Google Scholar
    • Export Citation
  • Frappart, F., Ramillien G. , Leblanc M. , Tweed S. O. , Bonnet M. P. , and Maisongrande P. , 2011b: An independent component analysis approach for filtering continental hydrology in the GRACE gravity data. Remote Sens. Environ., 115, 187204, doi:10.1016/j.rse.2010.08.017.

    • Search Google Scholar
    • Export Citation
  • Frappart, F., Papa F. , Santos da Silva J. , Ramillien G. , Prigent C. , Seyler F. , and Calmant S. , 2012: Surface freshwater storage and dynamics in the Amazon basin during the 2005 exceptional drought. Environ. Res. Lett., 7, 044010, doi:10.1088/1748-9326/7/4/044010.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 2000: Upper air mechanisms of the Southern Oscillation in the tropical Atlantic sector. J. Geophys. Res., 105, 14 99715 009.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TCMA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Lavado Casimiro, W. S., Labat D. , Ronchail J. , Espinoza J. C. , and Guyot J. L. , 2013: Trends in rainfall and temperature in the Peruvian Amazon–Andes basin over the last 40 years (1965–2007). Hydrol. Processes, doi:10.1002/hyp.9418, in press.

    • Search Google Scholar
    • Export Citation
  • Lewis, S. L., Brando P. M. , Phillips O. L. , van der Heijden G. M. F. , and Nepstad D. , 2011: The 2010 Amazon drought. Science, 311, 554, doi:10.1126/science.1200807.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., and Coauthors, 2008: The drought in Amazonia in 2005. J. Climate, 21, 495516.

  • Marengo, J. A., Tomasella J. , Alves L. M. , Soares W. R. , and Rodriguez D. A. , 2011: The drought of 2010 in the context of historical droughts in the Amazon region. Geophys. Res. Lett., 38, L12703, doi:10.1029/2011GL047436.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., Tomasella J. , Soares W. R. , Alves L. M. , and Nobre C. , 2012: Extreme climatic events in the Amazon basin. Theor. Appl. Climatol., 107, 7385, doi:10.1007/s00704-011-0465-1.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and Oort A. H. , 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Reynolds, R. W., and Smith T. M. , 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948.

    • Search Google Scholar
    • Export Citation
  • Ronchail, J., and Coauthors, 2006: Impact of the Amazon tributaries on flooding in Obidos. IAHS Publ.,308, 220–225.

  • Satyamurty, P., Wanzeler da Costa C. P. , and Manzi A. O. , 2013: Moisture source for the Amazon Basin: A study of contrasting years. Theor. Appl. Climatol., 111, 195–209, doi:10.1007/s00704-012-0637-7.

    • Search Google Scholar
    • Export Citation
  • Tomasella, J., Borma L. S. , Marengo J. A. , Rodriguez D. A. , Cuartas L. A. , Nobre C. A. , and Prado M. C. R. , 2011: The droughts of 1996–1997 and 2004–2005 in Amazonia: Hydrological response in the river main-stem. Hydrol. Processes,25, 1228–1242, doi:10.1002/hyp.7889.

  • Vera, C., Silvestri G. , Barros V. , and Carril A. , 2004: Differences in El Niño response over the Southern Hemisphere. J. Climate, 17, 17411753.

    • Search Google Scholar
    • Export Citation
  • Xavier, L., Becker M. , Cazenave A. , Longuevergne L. , Llovel W. , and Rotunno Filho O. C. , 2010: Interannual variability in water storage over 2003–2008 in the Amazon basin from GRACE space gravimetry, in situ river level and precipitation data. Remote Sens. Environ., 114, 16291637, doi:10.1016/j.rse.2010.02.005.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., Yoon J.-H. , Marengo J. A. , Subramaniam A. , Nobre C. A. , Mariotti A. , and Neelin J. D. , 2008: Causes and impact of the 2005 Amazon drought. Environ. Res. Lett., 3, 014002, doi:10.1088/1748-9326/3/1/014002.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3239 1188 117
PDF Downloads 1525 398 41