Intercomparison of Meteorological Forcing Data from Empirical and Mesoscale Model Sources in the North Fork American River Basin in Northern Sierra Nevada, California*

Nicholas E. Wayand University of Washington, Seattle, Washington

Search for other papers by Nicholas E. Wayand in
Current site
Google Scholar
PubMed
Close
,
Alan F. Hamlet University of Washington, Seattle, Washington

Search for other papers by Alan F. Hamlet in
Current site
Google Scholar
PubMed
Close
,
Mimi R. Abel Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/ESRL/PSD, Boulder, Colorado

Search for other papers by Mimi R. Abel in
Current site
Google Scholar
PubMed
Close
,
Shara I. Feld University of Washington, Seattle, Washington

Search for other papers by Shara I. Feld in
Current site
Google Scholar
PubMed
Close
, and
Jessica D. Lundquist University of Washington, Seattle, Washington

Search for other papers by Jessica D. Lundquist in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The data required to drive distributed hydrological models are significantly limited within mountainous terrain because of a scarcity of observations. This study evaluated three common configurations of forcing data: 1) one low-elevation station, combined with empirical techniques; 2) gridded output from the Weather Research and Forecasting Model (WRF); and 3) a combination of the two. Each configuration was evaluated within the heavily instrumented North Fork American River basin in California during October–June 2000–10. Simulations of streamflow and snowpack using the Distributed Hydrology Soil and Vegetation Model (DHSVM) highlighted precipitation and radiation as variables whose sources resulted in significant differences. The best source of precipitation data varied between years. On average, the WRF performed as well as the single station distributed using the Parameter Regression on Independent Slopes Model (PRISM). The average percent biases in simulated streamflow were 3% and 1%, for configurations 1 and 2, respectively, even though precipitation compared directly with gauge measurements was biased high by 6% and 17%, suggesting that gauge undercatch may explain part of the bias. Simulations of snowpack using empirically estimated longwave irradiance resulted in melt rates lower than those observed at high-elevation sites, while at lower elevations the same forcing caused significant midwinter melt that was not observed. These results highlight the complexity of how forcing data sources impact hydrology over different areas (high- versus low-elevation snow) and different time periods. Overall, results support the use of output from the WRF model over empirical techniques in regions with limited station data.

Joint Institute for the Study of the Atmosphere and Ocean Contribution Number 3653.

Corresponding author address: Nicholas E. Wayand, University of Washington, Box 352700, Seattle, WA 98392. E-mail: nicway@u.washington.edu

Abstract

The data required to drive distributed hydrological models are significantly limited within mountainous terrain because of a scarcity of observations. This study evaluated three common configurations of forcing data: 1) one low-elevation station, combined with empirical techniques; 2) gridded output from the Weather Research and Forecasting Model (WRF); and 3) a combination of the two. Each configuration was evaluated within the heavily instrumented North Fork American River basin in California during October–June 2000–10. Simulations of streamflow and snowpack using the Distributed Hydrology Soil and Vegetation Model (DHSVM) highlighted precipitation and radiation as variables whose sources resulted in significant differences. The best source of precipitation data varied between years. On average, the WRF performed as well as the single station distributed using the Parameter Regression on Independent Slopes Model (PRISM). The average percent biases in simulated streamflow were 3% and 1%, for configurations 1 and 2, respectively, even though precipitation compared directly with gauge measurements was biased high by 6% and 17%, suggesting that gauge undercatch may explain part of the bias. Simulations of snowpack using empirically estimated longwave irradiance resulted in melt rates lower than those observed at high-elevation sites, while at lower elevations the same forcing caused significant midwinter melt that was not observed. These results highlight the complexity of how forcing data sources impact hydrology over different areas (high- versus low-elevation snow) and different time periods. Overall, results support the use of output from the WRF model over empirical techniques in regions with limited station data.

Joint Institute for the Study of the Atmosphere and Ocean Contribution Number 3653.

Corresponding author address: Nicholas E. Wayand, University of Washington, Box 352700, Seattle, WA 98392. E-mail: nicway@u.washington.edu
Save
  • Abel, M. R., and Hall A. , 2009: Local and synoptic mechanisms causing Southern California’s Santa Ana winds. Climate Dyn., 34, 847857, doi:10.1007/s00382-009-0650-4.

    • Search Google Scholar
    • Export Citation
  • Alduchov, O. A., and Eskridge R. E. , 1996: Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteor., 35, 601609.

    • Search Google Scholar
    • Export Citation
  • Anders, A. M., Roe G. H. , Durran D. R. , and Minder J. R. , 2007: Small-scale spatial gradients in climatological precipitation on the Olympic Peninsula. J. Hydrometeor., 8, 10681081.

    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., Storck P. , and Lettenmaier D. P. , 2009: Modeling snow accumulation and ablation processes in forested environments. Water Resour. Res., 45, W05429, doi:10.1029/2008WR007042.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and Lettenmaier P. , 1994: Dynamic modeling of orographically induced precipitation. Rev. Geophys., 32, 265284.

  • Beckers, J. M., and Rixen M. , 2003: EOF calculations and data filling from incomplete oceanographic datasets. J. Atmos. Oceanic Technol., 20, 18391856.

    • Search Google Scholar
    • Export Citation
  • Bristow, K. L., and Campbell G. S. , 1984: On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric. For. Meteor., 31, 159166, doi:10.1016/0168-1923(84)90017-0.

    • Search Google Scholar
    • Export Citation
  • Brunt, D., 1932: Notes on radiation in the atmosphere. Quart. J. Roy. Meteor. Soc., 58, 389420, doi:10.1002/qj.49705824704.

  • Brutsaert, W., 1975: On a derivable formula for long-wave radiation from clear skies. Water Resour. Res., 11, 742744.

  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chin, H.-N. S., Caldwell P. M. , and Bader D. C. , 2010: Preliminary study of California wintertime model wet bias. Mon. Wea. Rev., 138, 35563571.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Neilson R. P. , and Phillips D. L. , 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158.

    • Search Google Scholar
    • Export Citation
  • Daly, C., Gibson W. , Doggett M. , Smith J. , and Taylor G. , 2004: A probabilistic-spatial approach to the quality control of climate observations. Preprints, 14th AMS Conf. on Applied Climatology, Seattle, WA, Amer. Meteor. Soc., 7.3. [Available online at https://ams.confex.com/ams/pdfpapers/71411.pdf.]

  • Daly, C., Halbleib M. , Smith J. I. , Gibson W. P. , Doggett M. K. , Taylor G. H. , Curtis J. , and Pasteris P. P. , 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064.

    • Search Google Scholar
    • Export Citation
  • Das, T., Dettinger M. D. , Cayan D. R. , and Hidalgo H. G. , 2011: Potential increase in floods in California’s Sierra Nevada under future climate projections. Climate Change, 109, 7194, doi:10.1007/s10584-011-0298-z.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2005: Changes in streamflow timing in the western United States in recent decades. U.S. Fact Sheet 2006-3018, 4 pp. [Available online at http://pubs.usgs.gov/fs/2005/3018/pdf/FS2005_3018.pdf.]

  • Dettinger, M. D., and Coauthors, 2012: Design and quantification of an extreme winter storm scenario for emergency preparedness and planning exercises in California. Nat. Hazards, 60, 10851111, doi:10.1007/s11069-011-9894-5.

    • Search Google Scholar
    • Export Citation
  • Dilley, A. C., and O’Brien D. M. , 1998: Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water. Quart. J. Roy. Meteor. Soc., 124, 13911401.

    • Search Google Scholar
    • Export Citation
  • Dozier, J., and Frew J. , 1990: Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Trans. Geosci. Electron., 28, 963969.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., and Slingo A. , 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689719, doi:10.1256/smsqj.53106.

    • Search Google Scholar
    • Export Citation
  • Flerchinger, G. N., Xaio W. , Marks D. , Sauer T. J. , and Yu Q. , 2009: Comparison of algorithms for incoming atmospheric long-wave radiation. Water Resour. Res., 45, W03423, doi:10.1029/2008WR007394.

    • Search Google Scholar
    • Export Citation
  • Franklin, A. I., 1983: Climate of the Priest River Experimental Forest, northern Idaho. General Tech. Rep. INT-159, USDA Intermountain Forest Range and Experimental Station, Ogden, UT, 58 pp. [Available online at http://www.fs.fed.us/rm/pubs_int/int_gtr159.pdf.]

  • Fry, J., and Coauthors, 2011: Completion of the 2006 National Land Cover Database for the Conterminous United States. Photogramm. Eng. Remote Sens., 77, 858864.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., and Lettenmaier D. P. , 1999: Effects of climate change on hydrology and water resources in the Columbia River basin. J. Amer. Water Resour. Assoc., 35, 15971623.

    • Search Google Scholar
    • Export Citation
  • Henn, B., Lundquist J. D. , and Fisher A. , 2013: An evaluation of the effectiveness of methods of filling gaps in near-surface air temperature data. J. Hydrometeor., in press.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Hungerford, R., Nemani R. R. , Running S. W. , and Coughlan J. C. , 1989: MTCLIM: A mountain microclimate simulation model. Res. Paper INT-414, USDA Forest Service Intermountain Research Station, Ogden, UT, 56 pp. [Available online at http://www.fs.fed.us/rm/pubs_int/int_rp414.pdf.]

  • Huwald, H., Higgins C. W. , Boldi M.-O. , Bou-Zeid E. , Lehning M. , and Parlange M. B. , 2009: Albedo effect on radiative errors in air temperature measurements. Water Resour. Res., 45, W08431, doi:10.1029/2008WR007600.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kimball, B. A., Idso S. B. , and Aase J. K. , 1982: A model of thermal radiation from partly cloudy and overcast skies. Water Resour. Res., 18, 931936.

    • Search Google Scholar
    • Export Citation
  • Kimball, B. A., Running S. W. , and Nemani R. , 1997: An improved method for estimating surface humidity from daily minimum temperature. Agric. For. Meteor., 85, 8798.

    • Search Google Scholar
    • Export Citation
  • Kuraś, P. K., Alila Y. , Weiler M. , Spittlehouse D. , and Winkler R. , 2011: Internal catchment process simulation in a snow-dominated basin: Performance evaluation with spatiotemporally variable runoff generation and groundwater dynamics. Hydrol. Processes, 25, 31873203.

    • Search Google Scholar
    • Export Citation
  • Laramie, R. L., and Schaake D. J. , 1972: Simulation of the Continuous Snowmelt Process. Massachusetts Institute of Technology, Cambridge, MA, 167 pp.

  • Leung, L., Wigmosta M. S. , and Ghan S. , 1996: Application of a subgrid orographic precipitation/surface hydrology scheme to a mountain watershed. J. Geophys. Res., 101, 12 803812, 817.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., and Huggett B. , 2008: Evergreen trees as inexpensive radiation shields for temperature sensors. Water Resour. Res., 44, W00D04, doi:10.1029/2008WR006979.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., Cayan D. R. , and Dettinger M. D. , 2003: Meteorology and hydrology in Yosemite National Park: A sensor network application. Information Processing in Sensor Networks: Second International Workshop, F. Zhao and L. Guibas, Eds., Lecture Notes in Computer Science, Vol. 2634, Springer-Verlag, 518–528. [Available online at http://tenaya.ucsd.edu/~jessica/Lundquist_sensornetwork.pdf.]

  • Lundquist, J. D., Huggett B. , Roop H. , and Low N. , 2009: Use of spatially distributed stream stage recorders to augment rain gages by identifying locations of thunderstorm precipitation and distinguishing rain from snow. Water Resour. Res., 45, W00D25, doi:10.1029/2008WR006995.

    • Search Google Scholar
    • Export Citation
  • Male, D. H., and Granger R. J. , 1981: Snow surface energy exchange. Water Resour. Res., 17, 609627.

  • Malek, E., 2008: The daily and annual effects of dew, frost, and snow on a non-ventilated net radiometer. J. Atmos. Res., 89, 243251, doi:10.1016/j.atmosres.2008.02.006.

    • Search Google Scholar
    • Export Citation
  • Marks, D., and Dozier J. , 1992: Climate and energy exchange at the snow surface in the alpine region of the Sierra Nevada: 2. Snow cover energy balance. Water Resour. Res., 28, 30433054.

    • Search Google Scholar
    • Export Citation
  • Marks, D., Kimball J. , and Tingey D. , 1998: The sensitivity of snowmelt processes to climate conditions and forest cover during rain-on-snow: A case study of the 1996 Pacific Northwest flood. Hydrol. Processes, 12, 15691587.

    • Search Google Scholar
    • Export Citation
  • Marty, C., Philipona R. , Fröhlich C. , and Ohmura A. , 2002: Altitude dependence of surface radiation fluxes and cloud forcing in the alps: results from the alpine surface radiation budget network. Theor. Appl. Climatol., 72, 137155.

    • Search Google Scholar
    • Export Citation
  • Matsui, N., and Coauthors, 2012: Evaluation of Arctic broadband surface radiation measurements. Atmos. Meas. Tech., 5, 429438, doi:10.5194/amt-5-429-2012.

    • Search Google Scholar
    • Export Citation
  • Meehl, G., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, Cambridge University Press, 747–845.

  • Meek, D. W., and Hatfield J. L. , 1994: Data quality checking for single station meteorological databases. Agric. For. Meteor., 69, 85109.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., DiMego G. , and Kalnay E. , 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Minder, J. R., Mote P. W. , and Lundquist J. D. , 2010: Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. J. Geophys. Res., 115, D14122, doi:10.1029/2009JD013493.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., Durran D. R. , and Roe G. H. , 2011: Mesoscale controls on the mountainside snow line. J. Atmos. Sci., 68, 21072127, doi:10.1175/JAS-D-10-05006.1.

    • Search Google Scholar
    • Export Citation
  • Mizukami, N., and Smith M. B. , 2012: Analysis of inconsistencies in multi-year gridded quantitative precipitation estimate over complex terrain and its impact on hydrologic modeling. J. Hydrol., 428–429, 129141, doi:10.1016/j.jhydrol.2012.01.030.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102, 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., Thompson G. , and Tatarskii V. , 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., Hamlet A. F. , Clark M. P. , and Lettenmaier D. P. , 2005: Declining mountain snowpack in western North America. Bull. Amer. Meteor. Soc., 86, 3949.

    • Search Google Scholar
    • Export Citation
  • Murray, F. W., 1967: On the computation of saturation vapor pressure. J. Appl. Meteor., 6, 203204.

  • Nijssen, B., Lettenmaier D. P. , Liang X. , Wetzel S. W. , and Wood E. F. , 1997: Streamflow simulation for continental-scale river basins. Water Resour. Res., 33, 711724 , doi:10.1029/96WR03517.

    • Search Google Scholar
    • Export Citation
  • Pomeroy, J., Marks D. , Link T. , and Ellis C. , 2009: The impact of coniferous forest temperature on incoming longwave radiation to melting snow. Hydrol. Processes, 23, 25132525.

    • Search Google Scholar
    • Export Citation
  • Prata, A. J., 1996: A new long-wave formula for estimating downward clear-sky radiation at the surface. Quart. J. Roy. Meteor. Soc., 122, 11271151, doi:10.1002/qj.49712253306.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2005: Improving short-term (0–48 h) cool-season quantitative precipitation forecasting: Recommendations from a USWRP workshop. Bull. Amer. Meteor. Soc., 86, 16191632.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829.

    • Search Google Scholar
    • Export Citation
  • Reed, S., and Coauthors, 2004: Overall distributed model intercomparison project results. J. Hydrol., 298, 2760, doi:10.1016/j.jhydrol.2004.03.031.

    • Search Google Scholar
    • Export Citation
  • Ruiz-Arias, J. A., Pozo-Vázquez D. , Lara-Fanego V. , Santos-Alamillos F. J. , and Tovar-Pescador J. , 2011: A high-resolution topographic correction method for clear-sky solar irradiance derived with a numerical weather prediction model. J. Appl. Meteor. Climatol., 50, 24602472.

    • Search Google Scholar
    • Export Citation
  • Running, S. W., Nemani R. R. , and Hungerford R. D. , 1987: Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. Can. J. For. Res., 17, 472483, doi:10.1139/x87-081.

    • Search Google Scholar
    • Export Citation
  • Satterlund, D. R., 1979: An improved equation for estimating long-wave radiation from the atmosphere. Water Resour. Res., 15, 16491650.

    • Search Google Scholar
    • Export Citation
  • Sevruk, B., 1983: Correction of measured precipitation in the Alps using the water equivalent of new snow. Weather, 14, 4958.

  • Shamir, E., and Georgakakos K. P. , 2006: Distributed snow accumulation and ablation modeling in the American River basin. Adv. Water Resour., 29, 558570, doi:10.1016/j.advwatres.2005.06.010.

    • Search Google Scholar
    • Export Citation
  • Sicart, J., Pomeroy J. , and Essery R. , 2006: Incoming longwave radiation to melting snow: observations, sensitivity and estimation in northern environments. Hydrol. Processes, 20, 36973708.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Klemp J. , 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Soil Survey Staff, cited 2006: U.S. General Soil Map (STATSGO2) for California. Natural Resources Conservation Service, United States Department of Agriculture. [Available online at http://soils.usda.gov/survey/geography/ssurgo/description_statsgo2.html.]

  • Storck, P., 2000: Trees, snow and flooding: An investigation of forest canopy effects on snow accumulation and melt at the plot and watershed scales in the Pacific Northwest. Water Resources Series Tech. Rep. 161, University of Washington, Seattle, WA, 198 pp. [Available online at http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/5136/PB2001104138.pdf?sequence=1.]

  • Surfleet, C., Skaugset A. E. III, and Meadows M. W. , 2011: Road runoff and sediment sampling for determining road sediment yield at the watershed scale. Can. J. For. Res., 1980, 19701980, doi:10.1139/x11-104.

    • Search Google Scholar
    • Export Citation
  • Susong, D., Marks D. , and Garen D. , 1999: Methods for developing time-series climate surfaces to drive topographically distributed energy- and water-balance models. Hydrol. Processes, 13, 20032021.

    • Search Google Scholar
    • Export Citation
  • Tapash, D., Pierce D. W. , Cayan D. R. , Vano J. a. , and Lettenmaier D. P. , 2011: The importance of warm season warming to western U.S. streamflow changes. Geophys. Res. Lett., 38, L23403, doi:10.1029/2011GL049660.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., and Running S. W. , 1999: An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agric. For. Meteor., 93, 211228.

    • Search Google Scholar
    • Export Citation
  • Tobin, C., Nicotina L. , Parlange M. B. , Berne A. , and Rinaldo A. , 2011: Improved interpolation of meteorological forcings for hydrologic applications in a Swiss Alpine region. J. Hydrol., 401, 7789, doi:10.1016/j.jhydrol.2011.02.010.

    • Search Google Scholar
    • Export Citation
  • USACE, 1956: Snow hydrology summary report of the snow investigations. Tech. Rep., U.S. Army Corps of Engineers, North Pacific Division, Portland, OR, 437 pp.

  • von Storch, H., and Zwiers F. W. , 1999: Statistical Analysis in Climate Research. Cambridge University Press, 496 pp.

  • Waichler, S. R., and Wigmosta M. S. , 2003: Development of hourly meteorological values from daily data and significance to hydrological modeling at H. J. Andrews Experimental Forest. J. Hydrometeor., 4, 251263.

    • Search Google Scholar
    • Export Citation
  • Weingartner, R., and Pearson C. , 2001: A comparison of the hydrology of the Swiss Alps and the Southern Alps of New Zealand. Mt. Res. Dev., 21, 370381.

    • Search Google Scholar
    • Export Citation
  • Westrick, K., 2001: An evaluation of a high-resolution hydrometeorological modeling system for prediction of a cool-season flood event in a coastal mountainous watershed. J. Hydrometeor., 2, 161180.

    • Search Google Scholar
    • Export Citation
  • Westrick, K., and Storck P. , 2002: Description and evaluation of a hydrometeorological forecast system for mountainous watersheds. Wea. Forecasting, 17, 250262.

    • Search Google Scholar
    • Export Citation
  • Whitaker, A., Alila Y. , Beckers J. , and Toews D. , 2003: Application of the distributed hydrology soil vegetation model to Redfish Creek, British Columbia: Model evaluation using internal catchment data. Hydrol. Processes, 17, 199224, doi:10.1002/hyp.1119.

    • Search Google Scholar
    • Export Citation
  • Wigmosta, M. S., Vail L. W. , and Lettenmaier D. P. , 1994: A distributed hydrology-vegetation model for complex terrain. Water Resour. Res., 30, 16651679.

    • Search Google Scholar
    • Export Citation
  • Zhao, Q., Liu Z. , Ye B. , Qin Y. , Wei Z. , and Fang S. , 2009: A snowmelt runoff forecasting model coupling WRF and DHSVM. Hydrol. Earth Syst. Sci., 13, 18971906, doi:10.5194/hess-13-1897-2009.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 131 0 0
Full Text Views 964 759 50
PDF Downloads 165 44 1