Representing Land Surface Heterogeneity: Offline Analysis of the Tiling Method

Andrea Manrique-Suñén ECMWF, Reading, United Kingdom

Search for other papers by Andrea Manrique-Suñén in
Current site
Google Scholar
PubMed
Close
,
Annika Nordbo Department of Physics, University of Helsinki, Helsinki, Finland

Search for other papers by Annika Nordbo in
Current site
Google Scholar
PubMed
Close
,
Gianpaolo Balsamo ECMWF, Reading, United Kingdom

Search for other papers by Gianpaolo Balsamo in
Current site
Google Scholar
PubMed
Close
,
Anton Beljaars ECMWF, Reading, United Kingdom

Search for other papers by Anton Beljaars in
Current site
Google Scholar
PubMed
Close
, and
Ivan Mammarella Department of Physics, University of Helsinki, Helsinki, Finland

Search for other papers by Ivan Mammarella in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The tiling method is used in many land surface models to represent the surface heterogeneity. Each grid box is divided into fractions of different types of land use with independent solutions of the surface energy budget. An area-weighted average of the energy fluxes is computed to couple with the atmosphere, assuming the air above the surface is well blended at a given height. In the framework of validation of the tiling method, the ECMWF land surface scheme has been tested in offline mode driven by meteorological forcing provided by the ECMWF Interim Re-Analysis (ERA-Interim). Two contrasting surfaces in the boreal region of southern Finland are considered: a Scots pine forest (Hyytiälä) and a small nearby lake (Valkea-Kotinen). The field observations are used to evaluate the land surface model simulations for both energy fluxes and reservoirs. The model is able to characterize the main difference between the two sites, which appears in the energy partitioning, explained by the lake’s large thermal inertia. In fact, while a large portion of the incoming solar radiation in the forest is released as sensible heat, the lake stores a substantial amount of energy in the water during late spring and summer and releases it in autumn. The different behavior of the fluxes both on annual and diurnal time scales confirms the benefit of a tiling mechanism in the presence of large contrast. However, it is also shown that the assumption of similar conditions at the blending height introduces errors.

Current affiliation: Department of Meteorology, University of Reading, Reading, United Kingdom.

Corresponding author address: Andrea Manrique-Suñén, ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom. E-mail: a.manriquesunen@ecmwf.int; a.manriquesunen@pgr.reading.ac.uk

Abstract

The tiling method is used in many land surface models to represent the surface heterogeneity. Each grid box is divided into fractions of different types of land use with independent solutions of the surface energy budget. An area-weighted average of the energy fluxes is computed to couple with the atmosphere, assuming the air above the surface is well blended at a given height. In the framework of validation of the tiling method, the ECMWF land surface scheme has been tested in offline mode driven by meteorological forcing provided by the ECMWF Interim Re-Analysis (ERA-Interim). Two contrasting surfaces in the boreal region of southern Finland are considered: a Scots pine forest (Hyytiälä) and a small nearby lake (Valkea-Kotinen). The field observations are used to evaluate the land surface model simulations for both energy fluxes and reservoirs. The model is able to characterize the main difference between the two sites, which appears in the energy partitioning, explained by the lake’s large thermal inertia. In fact, while a large portion of the incoming solar radiation in the forest is released as sensible heat, the lake stores a substantial amount of energy in the water during late spring and summer and releases it in autumn. The different behavior of the fluxes both on annual and diurnal time scales confirms the benefit of a tiling mechanism in the presence of large contrast. However, it is also shown that the assumption of similar conditions at the blending height introduces errors.

Current affiliation: Department of Meteorology, University of Reading, Reading, United Kingdom.

Corresponding author address: Andrea Manrique-Suñén, ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom. E-mail: a.manriquesunen@ecmwf.int; a.manriquesunen@pgr.reading.ac.uk
Save
  • Alduchov, O. A., and Eskridge R. E. , 1996: Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteor., 35, 601609.

    • Search Google Scholar
    • Export Citation
  • Aubinet, M., and Coauthors, 2000: Estimates of the annual net carbon and water exchange of European forests: The EUROFLUX methodology. Adv. Ecol. Res., 30, 113175.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., and Pielke R. A. , 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev., 117, 21132136.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Viterbo P. , Beljaars A. , van den Hurk B. , Hirschi M. , Betts A. K. , and Scipal K. , 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeor., 10, 623643.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Salgado R. , Dutra E. , Boussetta S. , Stockdale T. , and Potes M. , 2012: On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model. Tellus, 64A, 15829, doi:10.3402/tellusa.v64i0.15829.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., 1997: Air–sea interaction in the ECMWF model. Proc. Seminar on Atmosphere–Surface Interaction, Reading, United Kingdom, ECMWF, 33–52.

  • Beyrich, F., and Coauthors, 2006: Area-averaged surface fluxes over the LITFASS region based on eddy-covariance measurements. Bound.-Layer Meteor., 121, 3365.

    • Search Google Scholar
    • Export Citation
  • Blyth, E. M., Harding R. J. , and Essery R. , 1999: A coupled dual source GCM SVAT. Hydrol. Earth Syst. Sci., 3, 7184.

  • Buck, A. L., 1981: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteor., 20, 15271532.

  • Claussen, M., 1991: Estimation of areally-averaged surface fluxes. Bound.-Layer Meteor., 54, 387410.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., Stepanenko V. M. , Balsamo G. , Viterbo P. , Miranda P. M. A. , Mironov D. , and Schär C. , 2010: An offline study of the impact of lakes on the performance of the ECMWF surface scheme. Boreal Environ. Res., 15, 100112.

    • Search Google Scholar
    • Export Citation
  • Eerola, K., Rontu L. , Kourzeneva E. , and Shcherbak E. , 2010: A study on effects of lake temperature and ice cover in HIRLAM. Boreal Environ. Res, 15, 130142.

    • Search Google Scholar
    • Export Citation
  • Essery, R., Best M. , Betts R. , and Cox P. , 2003: Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J. Hydrometeor., 4, 530545.

    • Search Google Scholar
    • Export Citation
  • Hari, P., and Kulmala M. , 2005: Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II). Boreal Environ. Res., 10, 315322.

  • Hillel, D., 1982: Introduction to Soil Physics. Academic Press, 364 pp.

  • Huotari, J., Ojala A. , Peltomaa E. , Pumpanen J. , Hari P. , and Vesala T. , 2009: Temporal variations in surface water CO2 concentration in a boreal humic lake based on high-frequency measurements. Boreal Environ. Res, 14, 4860.

    • Search Google Scholar
    • Export Citation
  • Koster, R., and Suarez M. , 1992: A comparative analysis of two land surface heterogeneity representations. J. Climate, 5, 13791390.

  • Launiainen, S., 2010: Seasonal and inter-annual variability of energy exchange above a boreal Scots pine forest. Biogeosciences, 7, 39213940, doi:10.5194/bg-7-3921-2010.

    • Search Google Scholar
    • Export Citation
  • Mammarella, I., Launiainen S. , Gronholm T. , Keronen P. , Pumpanen J. , Rannik Ü. , and Vesala T. , 2009: Relative humidity effect on the high-frequency attenuation of water vapor flux measured by a closed-path eddy covariance system. J. Atmos. Oceanic Technol., 26, 18561866.

    • Search Google Scholar
    • Export Citation
  • Mason, P. J., 1988: The formation of areally-averaged roughness lengths. Quart. J. Roy. Meteor. Soc., 114, 399420.

  • Mironov, D., 2008: Parameterization of lakes in numerical weather prediction description of a lake model. COSMO Tech. Rep. 11, 41 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/techReports/docs/techReport11.pdf.]

  • Mironov, D., Heise E. , Kourzeneva E. , Ritter B. , Schneider N. , and Terzhevik A. , 2010: Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO. Boreal Environ. Res., 15, 218230.

    • Search Google Scholar
    • Export Citation
  • Nordbo, A., Launiainen S. , Mammarella I. , Leppäranta M. , Huotari J. , Ojala A. , and Vesala T. , 2011: Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. J. Geophys. Res., 116, D02119, doi:10.1029/2010JD014542.

    • Search Google Scholar
    • Export Citation
  • Rooney, G. G., and Jones I. D. , 2010: Coupling the 1-D lake model FLake to the community land-surface model JULES. Boreal Environ. Res., 15, 501512.

    • Search Google Scholar
    • Export Citation
  • Salgado, R., and Le Moigne P. , 2010: Coupling of the FLake model to the Surfex externalized surface model. Boreal Environ. Res, 15, 231244.

    • Search Google Scholar
    • Export Citation
  • Samuelsson, P., Kourzeneva E. , and Mironov D. , 2010: The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environ. Res., 15, 113129.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Mintz Y. , Sud Y. C. , and Dalcher A. , 1986: A simple biosphere model (SiB) for use within general circulation model. J. Atmos. Sci., 43, 505531.

    • Search Google Scholar
    • Export Citation
  • Stepanenko, V. M., Goyette S. , Martynov A. , Perroud M. , Fang X. , and Mironov D. , 2010: First steps of a Lake Model Intercomparison Project: LakeMIP. Boreal Environ. Res., 15, 191202.

    • Search Google Scholar
    • Export Citation
  • van den Hurk, B. J. J. M., Viterbo P. , Beljaars A. C. M. , and Betts A. K. , 2000: Offline validation of the ERA40 surface scheme. ECMWF Tech. Memo 295, 42 pp. [Available online at http://www.knmi.nl/publications/fulltexts/tm295.pdf.]

  • Vesala, T., and Coauthors, 1998: Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat, Mass Momentum Transfer, 4, 1735.

    • Search Google Scholar
    • Export Citation
  • Vesala, T., Huotari J. , Rannik Ü. , Suni T. , Smolander S. , Sogachev A. , Launiainen S. , and Ojala A. , 2006: Eddy covariance measurements of carbon exchange and latent and sensible heat fluxes over a boreal lake for a full open-water period. J. Geophys. Res., 111, D11101, doi:10.1029/2005JD006365.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., and Beljaars A. C. M. , 1995: An improved land surface parametrization scheme in the ECMWF model and its validation. J. Climate, 8, 27162748.

    • Search Google Scholar
    • Export Citation
  • Wild, M., Ohmura A. , Gilgen H. , Morcrette J.-J. , and Slingo A. , 2001: Evaluation of downward longwave radiation in general circulation models. J. Climate, 14, 32273239.

    • Search Google Scholar
    • Export Citation
  • Wilson, K., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agric. For. Meteor., 113, 223243.

All Time Past Year Past 30 Days
Abstract Views 203 0 0
Full Text Views 1537 1157 96
PDF Downloads 185 46 5