• Aziz, O. A., , Tootle G. A. , , Gray S. T. , , and Piechota T. C. , 2010: Identification of Pacific Ocean sea surface temperature influences of upper Colorado River basin snowpack. Water Resour. Res., 46, W07536, doi:10.1029/2009WR008053.

    • Search Google Scholar
    • Export Citation
  • Bao, X., , and Zhang F. , 2013: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J. Climate, 26, 206214.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., , Robertson F. R. , , and Chen J. , 2011: Global energy and water budgets in MERRA. J. Climate, 24, 57215739.

  • Chambers, D. P., 2006: Evaluation of new GRACE time-variable gravity data over the ocean. Geophys. Res. Lett., 33, L17603, doi:10.1029/2006GL027296.

    • Search Google Scholar
    • Export Citation
  • Christensen, N. S., , and Lettenmaier D. P. , 2007: A multimodel ensemble approach to climate change impacts on the hydrology and water resources of the Colorado River basin. Hydrol. Earth Syst. Sci., 11, 14171434.

    • Search Google Scholar
    • Export Citation
  • Daly, C., , Neilson R. P. , , and Phillips D. L. , 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140158.

    • Search Google Scholar
    • Export Citation
  • Decker, M., , Brunke M. , , Wang Z. , , Sakaguchi K. , , Zeng X. , , and Bosilovich M. G. , 2012: Evaluation of the reanalysis products from GSFC, NCEP, and ECMWF using flux tower observations. J. Climate, 25, 19161944.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • De Lannoy, G. J. M., , Reichle R. H. , , Arsenault K. R. , , Houser P. R. , , Kumar S. , , Verhoest N. E. C. , , and Pauwels V. R. N. , 2012: Multiscale assimilation of Advanced Microwave Scanning Radiometer–EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado. Water Resour. Res., 48, W01522, doi:10.1029/2011WR010588.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., , Rodriguez-Iturbe I. , , and Bras R. L. , 1992: Variability in large-scale water balance with land surface–atmosphere interaction. J. Climate, 5, 798813.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., , and van den Dool H. , 2004: Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res., 109, D10102, doi:10.1029/2003JD004345.

    • Search Google Scholar
    • Export Citation
  • Fersch, B., , Kunstmann H. , , Bardossy A. , , Devaraju B. , , and Sneeuw N. , 2012: Continental-scale water storage variation from global and dynamically downscaled atmospheric water budgets in comparison with GRACE-derived observations. J. Hydrometeor., 13, 15891603.

    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., , Tu K. P. , , and Baldocchi D. D. , 2008: Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ., 112, 901919.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., , Karl T. R. , , Knight R. W. , , and Stenchikov G. L. , 1994: Changes of snow cover, temperature, and radiative heat balance over the Northern Hemisphere. J. Climate, 7, 16331656.

    • Search Google Scholar
    • Export Citation
  • Haiden, T., , and Pistotnik G. , 2009: Intensity-dependent parameterization of elevation effects in precipitation analysis. Adv. Geosci., 20, 3338.

    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., , Mote P. W. , , Clark M. P. , , and Lettenmaier D. P. , 2007: Twentieth-century trends in runoff, evapotranspiration, and soil moisture in the western United States. J. Climate, 20, 14681486.

    • Search Google Scholar
    • Export Citation
  • Hirpa, F. A., , Gebremichael M. , , and Hopson T. , 2010: Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J. Appl. Meteor. Climatol., 49, 10441051.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., , and Eischeid J. , 2007: Past peak water in the Southwest. Southwest Hydrol., 6, 1819.

  • Huang, J., , van den Dool H. M. , , and Georgakakos K. P. , 1996: Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J. Climate, 9, 13501362.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Hurkmans, R., , Troch P. A. , , Uijlenhoet R. , , Torfs P. , , and Durcik M. , 2009: Effects of climate variability on water storage in the Colorado River basin. J. Hydrometeor., 10, 12571270.

    • Search Google Scholar
    • Export Citation
  • Jimenez, C., and Coauthors, 2011: Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res., 116, D02102, doi:10.1029/2010JD014545.

    • Search Google Scholar
    • Export Citation
  • Jung, M., , Reichstein M. , , and Bondeau A. , 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 20012013.

    • Search Google Scholar
    • Export Citation
  • Kelly, R. E., 2009: The AMSR-E snow depth algorithm: Description and initial results. J. Remote Sens. Soc. Japan, 29, 307317.

  • Kennedy, A. D., , Dong X. , , Xi B. , , Xie S. , , Zhang Y. , , and Chen J. , 2011: A comparison of MERRA and NARR reanalyses with DOE ARM SGP data. J. Climate, 24, 45414557.

    • Search Google Scholar
    • Export Citation
  • Kim, T. W., , Valdes B. , , Nijssen B. , , and Roncayolo D. , 2005: Quantification of linkages between large-scale climatic patterns and precipitation in the Colorado River Basin. J. Hydrol., 321, 173186.

    • Search Google Scholar
    • Export Citation
  • Kustas, W. P., and Coauthors, 1991: An interdisciplinary field study of the energy and water fluxes in the atmosphere–biosphere system over semiarid rangelands: Description and some preliminary results. Bull. Amer. Meteor. Soc., 72, 16831705.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., , and Dettinger M. D. , 2002: Primary modes and predictability of year-to-year snowpack variations in the western United States from teleconnections with Pacific Ocean climate. J. Hydrometeor., 3, 1325.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., , and Wolock D. M. , 2007: Warming may create substantial water supply shortages in the Colorado River basin. Geophys. Res. Lett., 34, L22708, doi:10.1029/2007GL031764.

    • Search Google Scholar
    • Export Citation
  • Miller, W. P., , and Piechota T. C. , 2008: Regional analysis of trend and step changes observed in hydroclimatic variability around the Colorado River Basin. J. Hydrometeor., 9, 10201034.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors, 2011: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230.

    • Search Google Scholar
    • Export Citation
  • NRCS NWCC, cited 2012: SNOTEL data network: General information. [Available online at http://www.wcc.nrcs.usda.gov/snow/about.html.]

  • Peixoto, J. P., , and Oort A. H. , 1992: Physics of Climate. Springer, 520 pp.

  • Reichle, R. H., , Koster R. D. , , De Lannoy G. J. M. , , Forman B. A. , , Liu Q. , , Mahanama S. P. P. , , and Toure A. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., , Famiglietti J. S. , , Chen J. , , Seneviratne S. I. , , Viterbo P. , , Holl S. , , and Wilson C. R. , 2004a: Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett., 31, L20504, doi:10.1029/2004GL020873.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004b: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Sapiano, M. R. P., , and Arkin P. A. , 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149166.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184.

    • Search Google Scholar
    • Export Citation
  • Swenson, S. C., , and Wahr J. , 2006: Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33, L08402, doi:10.1029/2005GL025285.

    • Search Google Scholar
    • Export Citation
  • Switanek, M. B., , Troch P. A. , , and Castro C. L. , 2009: Improving seasonal predictions of climate variability and water availability at the catchment scale. J. Hydrometeor., 10, 15211533.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., , Gao H. , , Yeh P. , , Oki T. , , Su F. , , and Lettenmaier D. P. , 2010: Dynamics of terrestrial water storage change from satellite and surface observations and modeling. J. Hydrometeor., 11, 156170.

    • Search Google Scholar
    • Export Citation
  • Tootle, G. A., , and Piechota T. C. , 2006: Relationships between Pacific and Atlantic Ocean sea surface temperatures and U.S. streamflow variability. Water Resour. Res., 42, W07411, doi:10.1029/2005WR004184.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , Stepaniak D. P. , , and Caron J. M. , 2000: The global monsoon as seen through the divergent atmospheric circulation. J. Climate, 13, 39693993.

    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: Toward a unified view of the American monsoon systems. J. Climate, 19, 49775000.

  • Zaitchik, B. F., , Rodell M. , , and Reichle R. H. , 2008: Assimilation of GRACE terrestrial water storage data into a land surface model: Results for the Mississippi River basin. J. Hydrometeor., 9, 535548.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 76 76 6
Full Text Views 17 17 3
PDF Downloads 12 12 2

A Comparison of in Situ, Reanalysis, and Satellite Water Budgets over the Upper Colorado River Basin

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

Using in situ, reanalysis, and satellite-derived datasets, surface and atmospheric water budgets of the Upper Colorado River basin are analyzed. All datasets capture the seasonal cycle for each water budget component. For precipitation, all products capture the interannual variability, though reanalyses tend to overestimate in situ while satellite-derived precipitation underestimates. Most products capture the interannual variability of evapotranspiration (ET), though magnitudes differ among the products. Variability and magnitude among storage volume change products widely vary. With regards to the surface water budget, the strongest connections exist among precipitation, ET, and soil moisture, while snow water equivalent (SWE) is best correlated with runoff. Using in situ precipitation estimates, the Max Planck Institute (MPI) ET estimates, and accumulated runoff, changes in storage are calculated and compare well with estimated changes in storage calculated using SWE, reservoir, and the Climate Prediction Center’s soil moisture. Using in situ precipitation estimates, MPI ET estimates, and atmospheric divergence estimates from the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) results in a long-term atmospheric storage change estimate of −73 mm. Long-term surface storage estimates combined with long-term runoff come close to balancing with long-term atmospheric convergence from ERA-Interim. Increasing the MPI ET by 5% leads to a better balance between surface storage changes, runoff, and atmospheric convergence. It also brings long-term atmospheric storage changes to a better balance at +13 mm.

Corresponding author address: Rebecca A. Smith, Colorado State University, Department of Atmospheric Science, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: smithre@atmos.colostate.edu

Abstract

Using in situ, reanalysis, and satellite-derived datasets, surface and atmospheric water budgets of the Upper Colorado River basin are analyzed. All datasets capture the seasonal cycle for each water budget component. For precipitation, all products capture the interannual variability, though reanalyses tend to overestimate in situ while satellite-derived precipitation underestimates. Most products capture the interannual variability of evapotranspiration (ET), though magnitudes differ among the products. Variability and magnitude among storage volume change products widely vary. With regards to the surface water budget, the strongest connections exist among precipitation, ET, and soil moisture, while snow water equivalent (SWE) is best correlated with runoff. Using in situ precipitation estimates, the Max Planck Institute (MPI) ET estimates, and accumulated runoff, changes in storage are calculated and compare well with estimated changes in storage calculated using SWE, reservoir, and the Climate Prediction Center’s soil moisture. Using in situ precipitation estimates, MPI ET estimates, and atmospheric divergence estimates from the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) results in a long-term atmospheric storage change estimate of −73 mm. Long-term surface storage estimates combined with long-term runoff come close to balancing with long-term atmospheric convergence from ERA-Interim. Increasing the MPI ET by 5% leads to a better balance between surface storage changes, runoff, and atmospheric convergence. It also brings long-term atmospheric storage changes to a better balance at +13 mm.

Corresponding author address: Rebecca A. Smith, Colorado State University, Department of Atmospheric Science, 1371 Campus Delivery, Fort Collins, CO 80523-1371. E-mail: smithre@atmos.colostate.edu
Save