Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling

Yongjiu Dai College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Yongjiu Dai in
Current site
Google Scholar
PubMed
Close
,
Wei Shangguan College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Wei Shangguan in
Current site
Google Scholar
PubMed
Close
,
Qingyun Duan College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Qingyun Duan in
Current site
Google Scholar
PubMed
Close
,
Baoyuan Liu School of Geography, Beijing Normal University, Beijing, China

Search for other papers by Baoyuan Liu in
Current site
Google Scholar
PubMed
Close
,
Suhua Fu School of Geography, Beijing Normal University, Beijing, China

Search for other papers by Suhua Fu in
Current site
Google Scholar
PubMed
Close
, and
Guoyue Niu Biosphere 2, University of Arizona, Tucson, Arizona

Search for other papers by Guoyue Niu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The objective of this study is to develop a dataset of the soil hydraulic parameters associated with two empirical soil functions (i.e., a water retention curve and hydraulic conductivity) using multiple pedotransfer functions (PTFs). The dataset is designed specifically for regional land surface modeling for China. The authors selected 5 PTFs to derive the parameters in the Clapp and Hornberger functions and the van Genuchten and Mualem functions and 10 PTFs for soil water contents at capillary pressures of 33 and 1500 kPa. The inputs into the PTFs include soil particle size distribution, bulk density, and soil organic matter. The dataset provides 12 estimated parameters and their associated statistical values. The dataset is available at a 30 × 30 arc second geographical spatial resolution and with seven vertical layers to the depth of 1.38 m. The dataset has several distinct advantages even though the accuracy is unknown for lack of in situ and regional measurements. First, this dataset utilizes the best available soil characteristics dataset for China. The Chinese soil characteristics dataset was derived by using the 1:1 000 000 Soil Map of China and 8595 representative soil profiles. Second, this dataset represents the first attempt to estimate soil hydraulic parameters using PTFs directly for continental China at a high spatial resolution. Therefore, this dataset should capture spatial heterogeneity better than existing estimates based on lookup tables according to soil texture classes. Third, the authors derived soil hydraulic parameters using multiple PTFs to allow flexibility for data users to use the soil hydraulic parameters most preferable to or suitable for their applications.

Corresponding author address: Yongjiu Dai, College of Global Change and Earth System Science, Beijing Normal University, No. 19, Xinjiekouwai St., Beijing 100875, China. E-mail: yongjiudai@bnu.edu.cn

Abstract

The objective of this study is to develop a dataset of the soil hydraulic parameters associated with two empirical soil functions (i.e., a water retention curve and hydraulic conductivity) using multiple pedotransfer functions (PTFs). The dataset is designed specifically for regional land surface modeling for China. The authors selected 5 PTFs to derive the parameters in the Clapp and Hornberger functions and the van Genuchten and Mualem functions and 10 PTFs for soil water contents at capillary pressures of 33 and 1500 kPa. The inputs into the PTFs include soil particle size distribution, bulk density, and soil organic matter. The dataset provides 12 estimated parameters and their associated statistical values. The dataset is available at a 30 × 30 arc second geographical spatial resolution and with seven vertical layers to the depth of 1.38 m. The dataset has several distinct advantages even though the accuracy is unknown for lack of in situ and regional measurements. First, this dataset utilizes the best available soil characteristics dataset for China. The Chinese soil characteristics dataset was derived by using the 1:1 000 000 Soil Map of China and 8595 representative soil profiles. Second, this dataset represents the first attempt to estimate soil hydraulic parameters using PTFs directly for continental China at a high spatial resolution. Therefore, this dataset should capture spatial heterogeneity better than existing estimates based on lookup tables according to soil texture classes. Third, the authors derived soil hydraulic parameters using multiple PTFs to allow flexibility for data users to use the soil hydraulic parameters most preferable to or suitable for their applications.

Corresponding author address: Yongjiu Dai, College of Global Change and Earth System Science, Beijing Normal University, No. 19, Xinjiekouwai St., Beijing 100875, China. E-mail: yongjiudai@bnu.edu.cn
Save
  • Abdelbaki, A. M., Youssef M. A. , Naguib E. M. F. , Kiwa M. E. , and El-giddawy E. I. , 2009: Evaluation of pedotransfer functions for predicting saturated hydraulic conductivity for U.S. soils. ASABE International Meeting, ASABE, Reno, NV, 097429.

  • Batjes, N. H., 1996: Development of a world data set of soil water retention properties using pedotransfer rules. Geoderma, 71, 3152.

    • Search Google Scholar
    • Export Citation
  • Batjes, N. H., 2006: ISRIC-WISE derived soil properties on a 5 by 5 arc-minutes global grid. Rep. 2006/02, ISRIC World Soil Information, Wageningen, Netherlands, 45 pp.

  • Blyth, E., 2006: JULES: A new community land surface mode. Global Change Newsletter, No. 66, IGBP, Stockholm, Sweden, 9–11.

  • Brooks, R. H., and Corey A. T. , 1964: Hydraulic properties of porous media. Hydrology Paper 3, Colorado State University, Ft. Collins, CO, 27 pp.

  • Bruand, A., Baize D. , and Hardy M. , 1994: Predicting water retention properties of clayey soil using a single soil characteristic. Soil Use Manage., 10, 99103.

    • Search Google Scholar
    • Export Citation
  • Campbell, G. S., 1974: A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci., 117, 311314.

    • Search Google Scholar
    • Export Citation
  • Campbell, G. S., and Shiozawa S. , 1992: Prediction of hydraulic properties of soils using particle size distribution and bulk density data. Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, M. Th. van Genuchten, F. J. Leij, and L. J. Lund, Eds., U.S. Salinity Laboratory, Riverside, CA, 317–328.

  • Canarache, A., 1993: Physical-technological maps—A possible product of soil survey for direct use in agriculture. Soil Technol., 6, 316.

    • Search Google Scholar
    • Export Citation
  • Carsel, R. F., and Parrish R. S. , 1988: Developing joint probability distributions of soil water retention characteristics. Water Resour. Res., 24, 755770.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chirico, G. B., Medina H. , and Romano N. , 2010: Functional evaluation of PTF prediction uncertainty: An application at hillslope scale. Geoderma, 155, 193202.

    • Search Google Scholar
    • Export Citation
  • Clapp, R. W., and Hornberger G. M. , 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14, 601604.

  • Cornelis, W. M., Ronsyn J. , Meirvenne M. V. , and Hartmann R. , 2001: Evaluation of pedotransfer functions for predicting the soil Moisture retention curve. Soil Sci. Soc. Amer. J., 65, 638648.

    • Search Google Scholar
    • Export Citation
  • Cosby, B. J., Hornberger G. M. , Clapp R. B. , and Ginn T. R. , 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20, 682690.

    • Search Google Scholar
    • Export Citation
  • Cox, P. M., Betts R. A. , Bunton C. B. , Essery R. L. H. , Rowntree P. R. , and Smith J. , 1999: The impact of new land surface physics on the GCM sensitivity of climate and climate sensitivity. Climate Dyn., 15, 183203.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 10131023.

  • Dickinson, R. E., Henderson-Sellers A. , Kennedy P. J. , and Wilson M. F. , 1986: Biosphere–Atmosphere Transfer Scheme (BATS) for the Community Climate Model. NCAR Tech. Note NCAR/TN-275+STR, 72 pp. [Available online at http://nldr.library.ucar.edu/repository/assets/technotes/asset-000-000-000-527.pdf.]

  • Dickinson, R. E., Henderson-Sellers A. , and Kennedy P. J. , 1993: Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR-TN-387+STR, 88 pp. [Available online at http://nldr.library.ucar.edu/collections/technotes/asset-000-000-000-198.pdf.]

  • FAO, 1996: The Digitized Soil Map of the World Including Derived Soil Properties. FAO, CD-ROM.

  • FAO, 1971–1981: Soil Map of the World. UNESCO, 10 Vols.

  • FAO/IIASA/ISRIC/ISSCAS/JRC, cited 2012: Harmonized World Soil Database (version 1.2). [Available online at http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/.]

  • Givi, J., Prasher S. O. , and Patel R. M. , 2004: Evaluation of pedotransfer functions in predicting the soil water contents at field capacity and wilting point. Agric. Water Manage., 70, 8396.

    • Search Google Scholar
    • Export Citation
  • Global Soil Data Task, 2000: Global Soil Data Products CD-ROM (IGBP-DIS). ORNL Distributed Active Archive Center. [Available online at http://daac.ornl.gov/.]

  • Guber, A. K., and Pachepsky Y. A. , 2010: Multimodeling with pedotransfer functions: Documentation and user manual for PTF Calculator (CalcPTF), version 3.0. USDA Rep., Beltsville Agricultural Research Center, Beltsville, Md, 26 pp. [Available online at http://www.ars.usda.gov/SP2UserFiles/ad_hoc/12655300EnvironmentalTransport/CalcPTFFiles/PTF_Manual.version_3.0.pdf.]

  • Guber, A. K., Pachepsky Ya. A. , van Genuchten M. Th. , Rawls W. J. , Simunek J. , Jacques D. , Nicholson T. J. , and Cady R. E. , 2006: Field-scale water flow simulations using ensembles of pedotransfer functions for soil water retention. Vadose Zone J., 5, 234247.

    • Search Google Scholar
    • Export Citation
  • Guber, A. K., Pachepsky Ya. A. , van Genuchten M. Th. , Simunek J. , Jacques D. , Nemes A. , Nicholson T. J. , and Cady R. E. , 2009: Multimodel simulation of water flow in a field soil using pedotransfer functions. Vadose Zone J., 8, 110.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. C., and Larson W. E. , 1979: Estimating soil water retention characteristics from particle size distribution, organic matter content, and bulk density. Water Resour. Res., 15, 16331635.

    • Search Google Scholar
    • Export Citation
  • Hall, D. G. M., Reeve M. J. , Thomasson A. J. , and Wright V. F. , 1977: Water retention, porosity and density of field soils. Tech. Monogr. 9, Soil Survey of England and Wales, Harpenden, United Kingdom, 75 pp.

  • Hutson, J. L., and Cass A. , 1987: A retentivity function for use in soil–water simulation models. Eur. J. Soil Sci., 38, 105113.

  • Julia, M. F., Monreal T. E. , Jimeneza A. S. C. , and Melendez E. G. , 2004: Constructing a saturated hydraulic conductivity map of Spain using pedotransfer functions and spatial prediction. Geoderma, 123, 257277.

    • Search Google Scholar
    • Export Citation
  • Katschinski, N. A., 1956: Die mechanische Bodenanalyse und die Klassifikation der Böden nach ihrer mechanischen Zusammensetzung. Rapports au Sixiéme Congrés de la Science du Sol, Vol. B, International Society of Soil Science, 321–327.

  • Lee, D. H., 2005: Comparing the inverse parameter estimation approach with pedo-transfer function method for estimating soil hydraulic conductivity. Geosci. J., 9, 269276.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99, 415428.

    • Search Google Scholar
    • Export Citation
  • McBratney, A. B., Minasny B. , and Tranter G. , 2011: Necessary meta-data for pedotransfer functions. Geoderma, 160, 627629.

  • McCumber, M. C., and Pielke R. A. , 1981: Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model: 1. Soil layer. J. Geophys. Res., 86, 99299938.

    • Search Google Scholar
    • Export Citation
  • McKenzie, N., and Cresswell H. , 2002: Estimating soil physical properties using more readily available data. Soil Physical Measurement and Interpretation for Land Evaluation, N. McKenzie et al., Eds., CSIRO Publishing, 292–316.

  • Meyer, P. D., Rockhold M. L. , and Gee G. W. , 1997: Uncertainty analyses of infiltration and subsurface flow and transport for SDMP sites. Rep. NUREG/CR-6565, U.S. Nuclear Regulatory Commission, Washington, D.C., 85 pp. [Available online at http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6565/cr6565.pdf.]

  • Miller, D. A., and White R. A. , 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact., 2 . [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Minasny, B., and McBratney A. B. , 2000: Evaluation and development of hydraulic conductivity pedotransfer functions for Australian soil. Aust. J. Soil Res., 38, 906926.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. K., 1976: Fundamentals of Soil Behavior. John Wiley & Sons, 422 pp.

  • Moeys, J., and Shangguan W. , cited 2010: Soil texture: Functions for soil texture plot, classification and transformation. R function package. [Available online at http://cran.r-project.org/web/packages/soiltexture/.]

  • Mualem, Y., 1976: A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 513522.

  • Nemes, A., Schaap M. G. , and Wösten J. H. M. , 2003: Functional evaluation of pedotransfer functions derived from different scales of data collection. Soil Sci. Soc. Amer. J., 67, 10931102.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., Schnur R. , and Lettenmaier D. P. , 2001: Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model. J. Climate, 14, 17901808.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2004: Technical Description of the Community Land Model (CLM). NCAR Tech. Note TN-461+STR, 186 pp. [Available online at http://nldr.library.ucar.edu/repository/assets/technotes/asset-000-000-000-537.pdf.]

  • Petersen, G. W., Cunningham R. L. , and Matelski R. P. , 1968: Moisture characteristics of Pennsylvania soils: I. Moisture retention as related to texture. Soil Sci. Soc. Amer. J., 32, 271275.

    • Search Google Scholar
    • Export Citation
  • Rajkai, K., and Varallyay G. , 1992: Estimating soil water retention from simpler properties by regression techniques. Proceedings of the International Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, M. Th. van Genuchten, F. J. Leij, and L. Lund, Eds., University of California, Riverside, 417–426.

  • Rajkai, K., Kabos S. , and Genuchten M. T. v. , 2004: Estimating the water retention curve from soil properties: Comparison of linear, nonlinear and concomitant variable methods. Soil Tillage Res., 79, 145152.

    • Search Google Scholar
    • Export Citation
  • Rawls, W. J., and Brakensiek D. L. , 1985: Prediction of soil water properties for hydrologic modeling. Proc. Symp. Watershed Management in the Eighties. Denver, CO, ASCE, 293–299.

  • Rawls, W. J., Brakensiek D. L. , and Saxton K. E. , 1982: Estimation of soil water properties. Trans. ASAE, 25, 13161320.

  • Rawls, W. J., Brakensiek D. L. , and Soni B. , 1983: Agricultural management effects on soil water processes. I: Soil water retention and Green-Ampt parameters. Trans. ASAE, 26, 17471752.

    • Search Google Scholar
    • Export Citation
  • Rawls, W. J., Pachepsky Y. A. , Ritchie J. C. , Sobecki T. M. , and Bloodworth H. , 2003: Effect of soil organic carbon on soil water retention. Geoderma, 116, 6176.

    • Search Google Scholar
    • Export Citation
  • Reynolds, C. A., Jackson T. J. , and Rawls W. J. , 2000: Estimating soil water-holding capacities by linking the Food and Agriculture Organization Soil map of the world with global pedon databases and continuous pedotransfer functions. Water Resour. Res., 36, 36533662.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394.

  • Rubio, C. M., 2008: Applicability of site-specific pedotransfer functions and Rosetta model for the estimation of dynamic soil hydraulic properties under different vegetation covers. J. Soils Sediments, 8, 137145.

    • Search Google Scholar
    • Export Citation
  • Saxton, K. E., and Rawls W. J. , 2006: Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Amer. J., 70, 15691578.

    • Search Google Scholar
    • Export Citation
  • Saxton, K. E., Rawls W. J. , Romberger J. S. , and Papendick R. I. , 1986: Estimating generalized soil water characteristics from texture. Soil Sci. Soc. Amer. J., 50, 10311036.

    • Search Google Scholar
    • Export Citation
  • Schaap, M. G., Leij F. J. , and Genuchten M. T. v. , 2001: Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol., 251, 163176.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., Mintz Y. C. S. Y. , and Dalcher A. , 1986: A simple biosphere model (SiB) for use within general circulation models. J. Atmos. Sci., 43, 305331.

    • Search Google Scholar
    • Export Citation
  • Shangguan, W., Dai Y. , Liu B. , Ye A. , and Yuan H. , 2012: A soil particle-size distribution dataset for regional land and climate modelling in China. Geoderma, 171–172, 8591.

    • Search Google Scholar
    • Export Citation
  • Shangguan, W., and Coauthors, 2013: A China dataset of soil properties for land surface modeling. J. Adv. Model. Earth Syst., doi:10.1002/jame.20026, in press.

    • Search Google Scholar
    • Export Citation
  • Shao, Y., and Irannejad P. , 1998: On the choice of soil hydraulic models in land-surface schemes. Bound.-Layer Meteor., 90, 83115.

  • Shi, X., Yu D. , Warner E. D. , Pan X. , Petersen G. W. , Gong Z. G. , and Weindorf D. C. , 2004: Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system. Soil Surv. Horiz., 45, 129136.

    • Search Google Scholar
    • Export Citation
  • Šimůnek, J., Genuchten M. T. V. , and Šejna M. , 2006: The HYDRUS software package for simulating two- and three-dimensional movement of water, heat, and multiple solutes in variably saturated media, version 1.0. Tech. Manual, PC Progress, Prague, Czech Republic, 241 pp. [Available online at http://ars.usda.gov/sp2UserFiles/Place/53102000/pdf_pubs/P2165.pdf.]

  • Sobieraj, J. A., Elsenbeer H. , and Vertessy R. A. , 2001: Pedotransfer functions for estimating saturated hydraulic conductivity: Implications for modeling storm flow generation. J. Hydrol., 251, 202220.

    • Search Google Scholar
    • Export Citation
  • Stolte, J., and Coauthors, 1994: Comparison of six methods to determine unsaturated soil hydraulic conductivity. Soil Sci. Soc. Amer. J., 58, 15961603.

    • Search Google Scholar
    • Export Citation
  • Stumpp, C., Engelhardt S. , Hofmann M. , and Huwe B. , 2009: Evaluation of pedotransfer functions for estimating soil hydraulic properties of prevalent soils in a catchment of the Bavarian Alps. Eur. J. For. Res., 128, 609620.

    • Search Google Scholar
    • Export Citation
  • Tietje, O., and Hennings V. , 1996: Accuracy of the saturated hydraulic conductivity prediction by pedo-transfer functions compared to the variability within FAO textural classes. Geoderma, 69, 7184.

    • Search Google Scholar
    • Export Citation
  • Tomasella, J., and Hodnett M. G. , 1998: Estimating soil water retention characteristics from limited data in Brazilian Amazonia. Soil Sci., 163, 190202.

    • Search Google Scholar
    • Export Citation
  • Tomasella, J., Pachepsky Y. , Crestana S. , and Rawls W. J. , 2003: Comparison of two techniques to develop pedotransfer functions for water retention. Soil Sci. Soc. Amer. J., 67, 10851092.

    • Search Google Scholar
    • Export Citation
  • van Genuchten, M. T., 1980: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J., 44, 892898.

    • Search Google Scholar
    • Export Citation
  • van Genuchten, M. T., Leij F. J. , and Yates S. R. , 1991: The RETC code for quantifying the hydraulic functions of unsaturated soils. EPA Rep. EPA/600/2-91/065, U.S. Salinity Laboratory, Riverside, CA, 85 pp.

  • Vereecken, H., Weynants M. , Javaux M. , Pachepsky Y. , Schaap M. G. , and Genuchten M. T. v. , 2010: Using pedotransfer functions to estimate the van Genuchten-Mualem soil hydraulic properties: A review. Vadose Zone J., 9, 795820.

    • Search Google Scholar
    • Export Citation
  • Wagner, B., Tarnawski V. R. , Hennings V. , Müller U. , Wessolek G. , and Plagge R. , 2001: Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma, 102, 275297.

    • Search Google Scholar
    • Export Citation
  • Webb, R. S., Rosenzweig C. E. , and Levine E. R. , 1993: Specifying land surface characteristics in general circulation models: Soil profile data set and derived water-holding capacities. Global Biogeochem. Cycles, 7, 97108.

    • Search Google Scholar
    • Export Citation
  • Western, A., and McKenzie N. J. , 2006: Soil hydrological properties of Australia. User Guide, CRC for Catchment Hydrology, Canberra, Australia, 21 pp. [Available online at http://www.toolkit.net.au/search/download.aspx?File_Src=doc&ResourceId=2000232.]

  • Weynants, M., Vereecken H. , and Javaux M. , 2009: Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone J., 8, 8695.

    • Search Google Scholar
    • Export Citation
  • Williams, A., Bloomfield J. , Griffiths K. , and Butler A. , 2006: Characterising the vertical variations in hydraulic conductivity within the Chalk aquifer. J. Hydrol., 330, 5362.

    • Search Google Scholar
    • Export Citation
  • Williams, J., Ross P. J. , and Bristow K. L. , 1992: Prediction of the Campbell water retention function from texture, structure and organic matter. Proceedings of the International Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, M. Th. van Genuchten, F. J. Leij, and L. Lund, Eds., University of California, Riverside, 427–442.

  • Wilson, M. F., and Henderson-Sellers A. , 1985: A global archive of land cover and soils data for use in general circulation climate models. J. Climatol., 5, 119143.

    • Search Google Scholar
    • Export Citation
  • Wösten, J. H. M., Lilly A. , Nemes A. , and Le Bas C. , 1999: Development and use of a database of hydraulic properties of European soils. Geoderma, 90, 169185.

    • Search Google Scholar
    • Export Citation
  • Zobler, L., 1986: A world soil file for global climate modeling. NASA Tech. Memo. 87802, 32 pp.

All Time Past Year Past 30 Days
Abstract Views 1 1 0
Full Text Views 5600 1873 124
PDF Downloads 4116 828 86