• Betts, A. K., , and Ball J. H. , 1998: FIFE surface climate and site-average dataset: 1987–1989. J. Atmos. Sci., 55, 10911108.

  • Betts, A. K., , Ball J. , , Barr A. , , Black T. A. , , McCaughey J. H. , , and Viterbo P. , 2006: Assessing land-surface-atmosphere coupling in the ERA-40 reanalysis with boreal forest data. Agric. For. Meteor., 140, 355382, doi:10.1016/j.agrformet.2006.08.009.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., , Brasnett B. , , and Robinson D. , 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.–Ocean, 41, 1–14.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., , and Entekhabi D. , 2001: The influence of snow cover on Northern Hemisphere climate variability. Atmos.–Ocean, 39, 3553.

  • De Lannoy, G. J. M., , Reichle R. H. , , Houser P. R. , , Arsenault K. R. , , Verhoest N. E. C. , , and Pauwels V. R. N. , 2010: Satellite-scale snow water equivalent assimilation into a high-resolution land surface model. J. Hydrometeor., 11, 352369.

    • Search Google Scholar
    • Export Citation
  • Dominguez, F., , and Kumar P. , 2008: Precipitation recycling variability and ecoclimatological stability—A study using NARR data. Part I: Central U.S. plains ecoregion. J. Climate, 21, 51655186.

    • Search Google Scholar
    • Export Citation
  • Dominguez, F., , Kumar P. , , and Vivoni E. R. , 2008: Precipitation recycling variability and ecoclimatological stability—A study using NARR data. Part II: North American monsoon region. J. Climate, 21, 51875203.

    • Search Google Scholar
    • Export Citation
  • Dutra, E., , Schär C. , , Viterbo P. , , and Miranda P. M. A. , 2011: Land-atmosphere coupling associated with snow cover. Geophys. Res. Lett.,38, L15707, doi:10.1029/2011GL048435.

  • Dyer, L. J., , and Mote T. L. , 2006: Spatial variability and trends in snow depth over North America. Geophys. Res. Lett., 33, L16503, doi:10.1029/2006GL027258.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., , and Wood E. F. , 2011: Observed land–atmosphere coupling from satellite remote sensing and reanalysis. J. Hydrometeor.,12, 1221–1254.

  • Findell, K. L., , and Eltahir E. A. B. , 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., , and Eltahir E. A. B. , 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., , Gentine P. , , Lintner B. R. , , and Kerr C. , 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434–439, doi:10.1038/ngeo1174.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., , and Chappell C. F. , 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 17221733.

    • Search Google Scholar
    • Export Citation
  • Ge, Y., , and Gong G. , 2008: Observed inconsistencies between snow extent and snow depth variability at regional/continental scales. J. Climate, 21, 10661082.

    • Search Google Scholar
    • Export Citation
  • Ge, Y., , and Gong G. , 2009: North American snow depth and climate teleconnection patterns. J. Climate, 22, 217233.

  • Gong, G., 2003: Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. J. Climate, 16, 39173931.

  • Gong, G., , Cohen J. , , and Entekhabi D. , 2007: Hemispheric-scale climate response to Northern Eurasia land surface characteristics and snow anomalies. Global Planet. Change, 56, 359370.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., 2000: Covariability of spring snowpack and summer rainfall across the southwest United States. J. Climate, 13, 40184027.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., , and Preston J. W. , 1997: Evidence for a relationship between spring snow cover in North America and summer rainfall in New Mexico. Geophys. Res. Lett., 24, 22072210.

    • Search Google Scholar
    • Export Citation
  • Hall, A., , Qu X. , , and Neelin J. D. , 2008: Improving predictions of summer climate change in the United States. Geophys. Res. Lett.,35, L01702, doi:10.1029/2007GL032012.

  • Hutchinson, M. F., , McKenney D. W. , , Lawrence K. , , Pedlar J. H. , , Hopkinson R. F. , , Milewska E. , , and Papadopol P. , 2009: Development and testing of Canada-wide interpolated spatial models of daily minimum–maximum temperature and precipitation for 1961–2003. J. Appl. Meteor. Climatol., 48, 725741.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Koster, R. D., , Schubert S. D. , , and Suarez M. J. , 2009: Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. J. Climate, 22, 33313341.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , Mahanama S. P. P. , , Livneh B. , , Lettenmaier D. P. , , and Reichle R. H. , 2010: Skill in streamflow forecasts derived from large-scale estimates of soil moisture and snow. Nat. Geosci., 3, 613616.

    • Search Google Scholar
    • Export Citation
  • Lawford, R., , Wheater H. , , and Wilson K. , 2011: Saskatchewan River Basin Regional Hydroclimate Project Exploratory Workshop reports. GEWEX News, No. 21, International GEWEX Project Office, Silver Spring, MD, 12–14.

  • Luo, Y., , Berbery E. H. , , Mitchell K. E. , , and Betts A. K. , 2007: Relationships between land surface and near-surface atmospheric variables in the NCEP North American Regional Reanalysis. J. Hydrometeor.,8, 1184–1203.

  • Mahanama, S., , Livneh B. , , Koster R. D. , , Lettenmaier D. , , and Reichle R. , 2012: Soil moisture, snow, and seasonal streamflow forecasts in the United States. J. Hydrometeor., 13, 189203.

    • Search Google Scholar
    • Export Citation
  • Mei, R., , and Wang G. L. , 2011: Impact of sea surface temperature and soil moisture on summer precipitation in the United States based on observational data. J. Hydrometeor., 12, 10861099.

    • Search Google Scholar
    • Export Citation
  • Meng, L., , and Quiring S. M. , 2010: Observational relationship of sea surface temperatures and precedent soil moisture with summer precipitation in the U.S. Great Plains. Int. J. Climatol., 30, 884893.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Namias, J., 1960: Factors in the initiation, perpetuation and termination of drought. IAHS Publ.,51, 81–94.

  • New, M., , Hulme M. , , and Jones P. , 1999: Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J. Climate, 12, 829856.

    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., , and Kvamsto N. G. , 2009: Role of Eurasian snow cover in wintertime circulation: Decadal simulations forced with satellite observations. J. Geophys. Res., 114, D19108, doi:10.1029/2009JD012253.

    • Search Google Scholar
    • Export Citation
  • Qu, X., , and Hall A. , 2007: What controls the strength of snow–albedo feedback? J. Climate, 20, 39713981.

  • Quiring, S. M., , and Kluver D. B. , 2009: Relationship between winter/spring snowfall and summer precipitation in the northern Great Plains of North America. J. Hydrometeor., 10, 12031217.

    • Search Google Scholar
    • Export Citation
  • Rouse, W. R., and Coauthors, 2003: Energy and water cycles in a high latitude, north-flowing river system: Summary of results from the Mackenzie EWEX Study—Phase 1. Bull. Amer. Meteor. Soc., 84, 7387.

    • Search Google Scholar
    • Export Citation
  • Saito, K., , Yasunari T. , , and Cohen J. , 2004: Changes in the sub-decadal covariability between Northern Hemisphere snow cover and the general circulation of the atmosphere. J. Int. Climatol., 24, 3344.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., , Friedl M. A. , , and Ek M. B. , 2007: Convective planetary boundary layer interactions with the land surface at diurnal time scales: Diagnostics and feedbacks. J. Hydrometeor., 8, 10821097.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., , Corti T. , , Davin E. L. , , Hirschi M. , , Jaeger E. B. , , Lehner I. , , Orlowsky B. , , and Teuling A. J. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161.

    • Search Google Scholar
    • Export Citation
  • Shabbar, A., , and Skinner W. , 2004: Summer drought patterns in Canada and the relationship to global sea surface temperatures, J. Climate, 17, 28662880.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , Goteti G. , , and Wood E. F. , 2006: Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111.

    • Search Google Scholar
    • Export Citation
  • Shepard, D., 1968: A two-dimensional interpolation function for irregularly-spaced data. Proc. 23rd Association for Computing Machinery National Conf., Washington, DC, Association of Computing Machinery, 517524.

    • Search Google Scholar
    • Export Citation
  • Siqueira, M., , Katul G. , , and Porporato A. , 2009: Soil moisture feedbacks on convection triggers: The role of soil–plant hydrodynamics. J. Hydrometeor., 10, 96111.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., and Coauthors, 1998: The Mackenzie GEWEX study: The water and energy cycles of a major North American river basin. Bull. Amer. Meteor. Soc., 79, 26652683.

    • Search Google Scholar
    • Export Citation
  • Su, H., , Yang Z.-L. , , Dickinson R. E. , , Wilson C. R. , , and Niu G.-Y. , 2010: Multisensor snow data assimilation at the continental scale: The value of Gravity Recovery and Climate Experiment terrestrial water storage information. J. Geophys. Res., 115, D10104, doi:10.1029/2009JD013035.

    • Search Google Scholar
    • Export Citation
  • Szeto, K. K., 2002: Moisture recycling over the Mackenzie Basin. Atmos.–Ocean, 40, 181197.

  • Szeto, K. K., , Stewart R. E. , , Yau M. K. , , and Gyakum J. , 2007: Northern tales: A synthesis of MAGS atmospheric and hydrometeorological research. Bull. Amer. Meteor. Soc., 88, 14111425.

    • Search Google Scholar
    • Export Citation
  • Szeto, K. K., , Tran H. , , MacKay M. D. , , Crawford R. , , and Stewart R. E. , 2008: The MAGS Water and Energy Budget Study. J. Hydrometeor., 9, 96115.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., , and Ellis R. J. , 2006: Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys. Res. Lett., 33, L03404, doi:10.1029/2005GL025252.

    • Search Google Scholar
    • Export Citation
  • Tuinenburg, O. A., , Hutjes R. W. A. , , Jacobs C. M. J. , , and Kabat P. , 2011: Diagnosis of local land–atmosphere feedbacks in India. J. Climate, 24, 251266.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., , and Betts A. K. , 1999: Impact on ECMWF forecasts of changes to the albedo of the boreal forests in the presence of snow. J. Geophys. Res., 104 (D22), 27 80327 810.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , Wang W.-C. , , and Wei J. , 2008: Assessing land-atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J. Geophys. Res., 113, D17119, doi:10.1029/2008JD009807.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., , Vincent L. A. , , Hogg W. D. , , and Niitsoo A. , 2000: Temperature and precipitation trends in Canada during the 20th century. Atmos.–Ocean, 38, 395429.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y. Y., , Klein S. A. , 2010: Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains site. J. Atmos. Sci., 67, 29432959.

    • Search Google Scholar
    • Export Citation
  • Zhu, C. M., , Lettenmaier D. P. , , and Cavazos T. , 2005: Role of antecedent land surface conditions on North American monsoon rainfall variability. J. Climate, 18, 31043121.

    • Search Google Scholar
    • Export Citation
  • Zhu, C. M., , Cavazos T. , , and Lettenmaier D. P. , 2007: Role of antecedent land surface conditions in warm season precipitation over northwestern Mexico. J. Climate, 20, 17741791.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 71 71 9
Full Text Views 2 2 1
PDF Downloads 5 5 2

How Are Spring Snow Conditions in Central Canada Related to Early Warm-Season Precipitation?

View More View Less
  • 1 Department of Geological Sciences, The John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas
  • | 2 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • | 3 Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The response of the warm-season atmosphere to antecedent snow anomalies has long been an area of study. This paper explores how the spring snow depth relates to subsequent precipitation in central Canada using ground observations, reanalysis datasets, and offline land surface model estimates. After removal of low-frequency ocean influences, April snow depth is found to correlate negatively with early warm-season (May–June) precipitation across a large portion of the study area. A chain of mechanisms is hypothesized to account for this observed negative relation: 1) a snow depth anomaly leads to a soil moisture anomaly, 2) the subsequent soil moisture anomaly affects ground turbulent fluxes, and 3) the atmospheric vertical structure allows dry soil to promote local convection. A detailed analysis supports this chain of mechanisms for those portions of the domain manifesting a statistically significant negative snow–precipitation correlation. For a portion of the study area, large-scale atmospheric circulation patterns also affect the early warm-season rainfall, indicating that the snow–precipitation feedback may depend on large-scale atmospheric dynamical features. This analysis suggests that spring snow conditions can contribute to warm-season precipitation predictability on a subseasonal to seasonal scale, but that the strength of such predictability varies geographically as it depends on the interplay of hydroclimatological conditions across multiple spatial scales.

Corresponding author address: Hua Su, Department of Geological Sciences, The University of Texas at Austin, 1 University Station C1100, Austin, TX 78712-0254. E-mail: edward_su@jsg.utexas.edu

Abstract

The response of the warm-season atmosphere to antecedent snow anomalies has long been an area of study. This paper explores how the spring snow depth relates to subsequent precipitation in central Canada using ground observations, reanalysis datasets, and offline land surface model estimates. After removal of low-frequency ocean influences, April snow depth is found to correlate negatively with early warm-season (May–June) precipitation across a large portion of the study area. A chain of mechanisms is hypothesized to account for this observed negative relation: 1) a snow depth anomaly leads to a soil moisture anomaly, 2) the subsequent soil moisture anomaly affects ground turbulent fluxes, and 3) the atmospheric vertical structure allows dry soil to promote local convection. A detailed analysis supports this chain of mechanisms for those portions of the domain manifesting a statistically significant negative snow–precipitation correlation. For a portion of the study area, large-scale atmospheric circulation patterns also affect the early warm-season rainfall, indicating that the snow–precipitation feedback may depend on large-scale atmospheric dynamical features. This analysis suggests that spring snow conditions can contribute to warm-season precipitation predictability on a subseasonal to seasonal scale, but that the strength of such predictability varies geographically as it depends on the interplay of hydroclimatological conditions across multiple spatial scales.

Corresponding author address: Hua Su, Department of Geological Sciences, The University of Texas at Austin, 1 University Station C1100, Austin, TX 78712-0254. E-mail: edward_su@jsg.utexas.edu
Save