Correction of Reflectivity in the Presence of Partial Beam Blockage over a Mountainous Region Using X-Band Dual Polarization Radar

Shakti P. C., National Research Institute for Earth Science and Disaster Prevention, and Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Japan

Search for other papers by Shakti P. C., in
Current site
Google Scholar
PubMed
Close
,
M. Maki National Research Institute for Earth Science and Disaster Prevention, and Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Japan

Search for other papers by M. Maki in
Current site
Google Scholar
PubMed
Close
,
S. Shimizu National Research Institute for Earth Science and Disaster Prevention, Tsukuba, Japan

Search for other papers by S. Shimizu in
Current site
Google Scholar
PubMed
Close
,
T. Maesaka National Research Institute for Earth Science and Disaster Prevention, Tsukuba, Japan

Search for other papers by T. Maesaka in
Current site
Google Scholar
PubMed
Close
,
D.-S. Kim National Research Institute for Earth Science and Disaster Prevention, Tsukuba, Japan

Search for other papers by D.-S. Kim in
Current site
Google Scholar
PubMed
Close
,
D.-I. Lee Department of Environmental Atmospheric Sciences, Pukyong National University, Busan, South Korea

Search for other papers by D.-I. Lee in
Current site
Google Scholar
PubMed
Close
, and
H. Iida Japan Weather Association, Tokyo, Japan

Search for other papers by H. Iida in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two approaches to correcting the partial beam blockage of radar reflectivity in mountainous areas were evaluated using X-band dual polarization radar data from the Hakone mountain region, Kanto, Japan. The comparatively simple digital elevation model (DEM) method calculates the power loss in the received signal based on the geometrical relationship between radar beams and a DEM. The second approach, the modified DEM method, attempts to account for unknown power losses related to ground clutter, hardware calibration errors, etc. Comparison between ground data and reflectivity data corrected by both methods suggests that the DEM method alone was insufficient to correct beam blockage problems but that the modified DEM data were in generally good agreement with the ground data. The authors also estimated 10-min rainfall amounts using reflectivity corrected by the modified DEM method and compared these with data from a network of rain gauges in the mountainous region. In general, the results show good agreement between radar estimates and rain gauge measurements. On the basis of their results, the authors conclude that the modified DEM method offers a suitable solution to the problem of beam blockage in mountainous regions, provided that the beam blockage rate is less than 80%.

Corresponding author address: Dr. Masayuki Maki, Education and Research Center for Regional Disaster Prevention, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan. E-mail: maki@rdc.kagoshima-u.ac.jp

Abstract

Two approaches to correcting the partial beam blockage of radar reflectivity in mountainous areas were evaluated using X-band dual polarization radar data from the Hakone mountain region, Kanto, Japan. The comparatively simple digital elevation model (DEM) method calculates the power loss in the received signal based on the geometrical relationship between radar beams and a DEM. The second approach, the modified DEM method, attempts to account for unknown power losses related to ground clutter, hardware calibration errors, etc. Comparison between ground data and reflectivity data corrected by both methods suggests that the DEM method alone was insufficient to correct beam blockage problems but that the modified DEM data were in generally good agreement with the ground data. The authors also estimated 10-min rainfall amounts using reflectivity corrected by the modified DEM method and compared these with data from a network of rain gauges in the mountainous region. In general, the results show good agreement between radar estimates and rain gauge measurements. On the basis of their results, the authors conclude that the modified DEM method offers a suitable solution to the problem of beam blockage in mountainous regions, provided that the beam blockage rate is less than 80%.

Corresponding author address: Dr. Masayuki Maki, Education and Research Center for Regional Disaster Prevention, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan. E-mail: maki@rdc.kagoshima-u.ac.jp
Save
  • Alberoni, P. P., Andersson T. , Mezzasalma P. , Michelson D. , and Nanni S. , 2001: Use of vertical reflectivity profile for identification of anomalous propagation. Meteor. Appl., 8, 257–266.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., Anagnostou M. N. , Krajewski W. F. , Kruger A. , and Miriovsky B. J. , 2004: High-resolution rainfall estimation from X-band polarimetric radar measurements. J. Hydrometeor., 5, 110–128.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, M. N., Kalogiros J. , Anagnostou E. N. , and Papadopoulos A. , 2009: Experimental results on rainfall estimation in complex terrain with a mobile X-band polarimetric weather radar. Atmos. Res., 94, 579–595.

    • Search Google Scholar
    • Export Citation
  • Austin, G. L., Nicol J. , Smith K. , Peace A. , and Stow D. , 2002: The space time variability of rainfall patterns: Implications for measurement and prediction. Preprints, 2002 Western Pacific Geophysics Meeting, Wellington, New Zealand, Amer. Geophys. Union, H42A-02.

  • Barber, P., and Yeh C. , 1975: Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies. Appl. Opt., 14, 2864–2872.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., Joshi M. , Putkonen J. , and Burbank D. W. , 2000: A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophys. Res. Lett., 27, 3683–3686.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Bech, J., Codina B. , Lorente J. , and Bebbington D. , 2003: The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient. J. Atmos. Oceanic Technol., 20, 845–855.

    • Search Google Scholar
    • Export Citation
  • Berne, A., Delrieu G. , Andrieu H. , and Creutin J.-D. , 2004: Influence of the vertical profile of reflectivity on radar-estimated rain rates at short time steps. J. Hydrometeor., 5, 296–310.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Bringi, V. N., Keenan T. D. , and Chandrasekar V. , 2001: Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 1906–1915.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., Rutledge S. A. , Ahijevych D. A. , and Keenan T. D. , 2000: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase. J. Appl. Meteor., 39, 1405–1433.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., Anagnostou E. N. , and Borga M. , 2002: Improving radar-based estimation of rainfall over complex terrain. J. Appl. Meteor., 41, 1163–1178.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., and Zawadzki I. , 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838–851.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., Germann U. , Gourley J. J. , and Tabary P. , 2007: Effects of radar beam shielding on rainfall estimation for the polarimetric C-band radar. J. Atmos. Oceanic Technol., 24, 1839–1859.

    • Search Google Scholar
    • Export Citation
  • Germann, U., Galli G. , Boscacci M. , and Bolliger M. , 2006: Radar precipitation measurement in a mountainous region. Quart. J. Roy. Meteor. Soc., 132, 1669–1692.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., and Ryzhkov A. V. , 2005: Calibration of dual-polarization radar in the presence of partial beam blockage. J. Atmos. Oceanic Technol., 22, 1156–1166.

    • Search Google Scholar
    • Export Citation
  • Harrold, T. W., English E. J. , and Nicholass C. A. , 1974: The accuracy of radar derived rainfall measurements in hilly terrain. Quart. J. Roy. Meteor. Soc., 100, 331–350.

    • Search Google Scholar
    • Export Citation
  • Kim, D.-S., Maki M. , and Lee D.-I. , 2010: Retrieval of three-dimensional raindrop size distribution using X-band polarimetric radar data. J. Atmos. Oceanic Technol., 27, 1265–1285.

    • Search Google Scholar
    • Export Citation
  • Koscielny, A. J., Doviak R. J. , and Rabin R. , 1982: Statistical considerations in the estimation of divergence from single-Doppler radar and application to prestorm boundary-layer observations. J. Appl. Meteor., 21, 197–210.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Smith J. A. , 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25, 1387–1394.

  • Krajewski, W. F., Ntelekos A. , and Goska R. , 2006: A GIS based methodology for the assessment of weather radar beam blockage in mountainous regions: Two examples from the U.S. NEXRAD network. Comput. Geosci., 32, 283–302.

    • Search Google Scholar
    • Export Citation
  • Kruger, A., and Krajewski W. F. , 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602–617.

    • Search Google Scholar
    • Export Citation
  • Kucera, P. A., Krajewski W. F. , and Young C. B. , 2004: Radar beam occultation studies using GIS and DEM technology: An example study of Guam. J. Atmos. Oceanic Technol., 21, 995–1006.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., Nesbitt S. W. , and Carey L. D. , 2009: On the correction of partial beam blockage in polarimetric radar data. J. Atmos. Oceanic Technol., 26, 943–957.

    • Search Google Scholar
    • Export Citation
  • Maki, M., and Coauthors, 2005a: Semi-operational rainfall observations with X-band multi-parameter radar. Atmos. Sci. Lett., 6, 12–18.

    • Search Google Scholar
    • Export Citation
  • Maki, M., Park S.-G. , and Bringi V. N. , 2005b: Effect of natural variations in raindrop size distributions on rain-rate estimators of 3-cm wavelength polarimetric radar. J. Meteor. Soc. Japan, 83, 871–893.

    • Search Google Scholar
    • Export Citation
  • Maki, M., Maesaka T. , Kato A. , Kim D. S. , and Iwanami K. , 2012: Composite rainfall map with X-band polarimetric radar network and C-band conventional radar. Indian J. Radio Space Phys., 41, 461–470.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2010: Evaluating polarimetric X-band radar rainfall estimators during HMT. J. Atmos. Oceanic Technol., 27, 122–134.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Clark K. A. , Martner B. E. , and Tokay A. , 2002: X-band polarimetric radar measurements of rainfall. J. Appl. Meteor., 41, 941–952.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Kingsmill D. E. , Martner B. E. , and Ralph F. M. , 2005: The utility of X-band polarimetric radar for quantitative estimates of rainfall parameters. J. Hydrometeor., 6, 248–262.

    • Search Google Scholar
    • Export Citation
  • Park, S.-G., Bringi V. N. , Chandrasekar V. , Maki M. , and Iwanami K. , 2005a: Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part I: Theoretical and empirical basis. J. Atmos. Oceanic Technol., 22, 1621–1632.

    • Search Google Scholar
    • Export Citation
  • Park, S.-G., Maki M. , Iwanami K. , Bringi V. N. , and Chandrasekar V. , 2005b: Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part II: Evaluation and application. J. Atmos. Oceanic Technol., 22, 1633–1655.

    • Search Google Scholar
    • Export Citation
  • Probert-Jones, J. R., 1962: The radar equation in meteorology. Quart. J. Roy. Meteor. Soc, 88, 485–495.

  • Ryzhkov, A., and Zrnic D. S. , 1995: Precipitation and attenuation measurements at a 10-cm wavelength. J. Appl. Meteor., 34, 2121–2134.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., and Zrnic D. S. , 1998: Polarimetric rainfall estimation in the presence of anomalous propagation. J. Atmos. Oceanic Technol., 15, 1320–1330.

    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., and Joe P. I. , 1994: Comparison of raindrop size distribution measurements by a Joss–Waldvogel disdrometer, a PMS 2DG spectrometer, and a POSS Doppler radar. J. Atmos. Oceanic Technol., 11, 874–887.

    • Search Google Scholar
    • Export Citation
  • Shin, D.-B., North G. R. , and Bowman K. P. , 2000: A summary of reflectivity profiles from the first year of TRMM radar data. J. Climate, 13, 4072–4086.

    • Search Google Scholar
    • Export Citation
  • Smyth, T. J., and Illingworth A. J. , 1998: Correction for attenuation of radar reflectivity using polarization data. Quart. J. Roy. Meteor. Soc., 124, 2393–2415.

    • Search Google Scholar
    • Export Citation
  • Testud, J., Le Bouar E. , Obligis E. , and Ali-Mehenni M. , 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332–356.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., Kruger A. , and Krajewski W. F. , 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40, 2083–2097.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., 2001: Raindrop size distributions and radar reflectivity-rain rate relationships for radar hydrology. Hydrol. Earth Syst. Sci., 5, 615–627.

    • Search Google Scholar
    • Export Citation
  • van de Beek, C. Z., Leijnse H. , Stricker J. N. M. , Uijlenhoet R. , and Russchenberg H. W. J. , 2010: Performance of high-resolution X-band radar for rainfall measurement in the Netherlands. Hydrol. Earth Syst. Sci., 14, 205–221.

    • Search Google Scholar
    • Export Citation
  • Vignal, B., Andrieu H. , and Creutin J. D. , 1999: Identification of vertical profiles of reflectivity from volume scan radar data. J. Appl. Meteor., 38, 1214–1228.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., Yates D. N. , and Brandes E. A. , 1999: The influence of terrain on rainfall estimates from radar reflectivity and specific propagation phase observations. J. Atmos. Oceanic Technol., 16, 837–845.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

All Time Past Year Past 30 Days
Abstract Views 203 0 0
Full Text Views 847 534 34
PDF Downloads 376 97 10