Global Calibration of the GEOS-5 L-Band Microwave Radiative Transfer Model over Nonfrozen Land Using SMOS Observations

Gabriëlle J. M. De Lannoy NASA Goddard Space Flight Center, Greenbelt, Maryland, and Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium

Search for other papers by Gabriëlle J. M. De Lannoy in
Current site
Google Scholar
PubMed
Close
,
Rolf H. Reichle NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Rolf H. Reichle in
Current site
Google Scholar
PubMed
Close
, and
Valentijn R. N. Pauwels Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium

Search for other papers by Valentijn R. N. Pauwels in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A zero-order (tau-omega) microwave radiative transfer model (RTM) is coupled to the Goddard Earth Observing System, version 5 (GEOS-5) catchment land surface model in preparation for the future assimilation of global brightness temperatures (Tb) from the L-band (1.4 GHz) Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions. Simulations using literature values for the RTM parameters result in Tb biases of 10–50 K against SMOS observations. Multiangular SMOS observations during nonfrozen conditions from 1 July 2011 to 1 July 2012 are used to calibrate parameters related to the microwave roughness h, vegetation opacity τ and/or scattering albedo ω separately for each observed 36-km land grid cell. A particle swarm optimization is used to minimize differences in the long-term (climatological) mean values and standard deviations between SMOS observations and simulations, without attempting to reduce the shorter-term (seasonal to daily) errors. After calibration, global Tb simulations for the validation year (1 July 2010 to 1 July 2011) are largely unbiased for multiple incidence angles and both H and V polarization [e.g., the global average absolute difference is 2.7 K for Tb H (42.5°), i.e., at 42.5° incidence angle]. The calibrated parameter values depend to some extent on the specific land surface conditions simulated by the GEOS-5 system and on the scale of the SMOS observations, but they also show realistic spatial distributions. Aggregating the calibrated parameter values by vegetation class prior to using them in the RTM maintains low global biases but increases local biases [e.g., the global average absolute difference is 7.1 K for Tb H (42.5°)].

Current affiliation: Department of Civil Engineering, Monash University, Clayton, Victoria, Australia.

Corresponding author address: Gabriëlle J. M. De Lannoy, NASA Goddard Space Flight Center, Code 610.1, Greenbelt Road, Greenbelt, MD 20771. E-mail: gabrielle.delannoy@nasa.gov

This article is included in the CAHMDA-V special collection.

Abstract

A zero-order (tau-omega) microwave radiative transfer model (RTM) is coupled to the Goddard Earth Observing System, version 5 (GEOS-5) catchment land surface model in preparation for the future assimilation of global brightness temperatures (Tb) from the L-band (1.4 GHz) Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions. Simulations using literature values for the RTM parameters result in Tb biases of 10–50 K against SMOS observations. Multiangular SMOS observations during nonfrozen conditions from 1 July 2011 to 1 July 2012 are used to calibrate parameters related to the microwave roughness h, vegetation opacity τ and/or scattering albedo ω separately for each observed 36-km land grid cell. A particle swarm optimization is used to minimize differences in the long-term (climatological) mean values and standard deviations between SMOS observations and simulations, without attempting to reduce the shorter-term (seasonal to daily) errors. After calibration, global Tb simulations for the validation year (1 July 2010 to 1 July 2011) are largely unbiased for multiple incidence angles and both H and V polarization [e.g., the global average absolute difference is 2.7 K for Tb H (42.5°), i.e., at 42.5° incidence angle]. The calibrated parameter values depend to some extent on the specific land surface conditions simulated by the GEOS-5 system and on the scale of the SMOS observations, but they also show realistic spatial distributions. Aggregating the calibrated parameter values by vegetation class prior to using them in the RTM maintains low global biases but increases local biases [e.g., the global average absolute difference is 7.1 K for Tb H (42.5°)].

Current affiliation: Department of Civil Engineering, Monash University, Clayton, Victoria, Australia.

Corresponding author address: Gabriëlle J. M. De Lannoy, NASA Goddard Space Flight Center, Code 610.1, Greenbelt Road, Greenbelt, MD 20771. E-mail: gabrielle.delannoy@nasa.gov

This article is included in the CAHMDA-V special collection.

Save
  • Al Bitar, A., Leroux D. , Kerr Y. H. , Merlin O. , Richaume P. , Sahoo A. , and Wood E. F. , 2012: Evaluation of SMOS soil moisture products over continental U.S. using the SCAN/SNOTEL network. IEEE Trans. Geosci. Remote Sens., 50, 15721586.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., Mahfouf J.-F. , Bélair S. , and Deblonde G. , 2006: A global root-zone soil moisture analysis using simulated L-band brightness temperature in preparation for the Hydros satellite mission. J. Hydrometeor., 7, 11261146.

    • Search Google Scholar
    • Export Citation
  • Bircher, S., Balling J. E. , Skou N. , and Kerr Y. H. , 2012: Validation of SMOS brightness temperatures during the HOBE airborne campaign, western Denmark. IEEE Trans. Geosci. Remote Sens., 50, 14681482.

    • Search Google Scholar
    • Export Citation
  • Campbell, G., 1974: A simple method for determining unsaturated conductivity from moisture retention data. Soil Sci., 117, 311314.

  • CESBIO, IPSL, INRA, Reading University, and Tor Vergata University, cited 2011: Algorithm Theoretical Basis Document (ATBD) for the SMOS Level 2 Soil Moisture Processor Development Continuation Project, Issue 3.4, 121 pp. [Available online at http://www.cesbio.ups-tlse.fr/data_all/SMOS-doc/atbd/ATBD_v3_4_20110124.pdf.]

  • Chanzy, A., Raju S. , and Wigneron J. , 1997: Estimation of soil microwave effective temperature at L and C bands. IEEE Trans. Geosci. Remote Sens., 35, 570580.

    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., Schmugge T. J. , Chang A. , and Newton R. W. , 1979: Effect of surface roughness on the microwave emission from soils. J. Geophys. Res., 84 (C9), 56995706.

    • Search Google Scholar
    • Export Citation
  • Collow, T. W., Robock A. , Basara J. B. , and Illston B. G. , 2012: Evaluation of SMOS retrievals of soil moisture over the central United States with currently available in situ observations. J. Geophys. Res., 117, D09113, doi:10.1029/2011JD017095.

    • Search Google Scholar
    • Export Citation
  • Cosh, M. H., Jackson T. J. , Moran S. , and Bindlish R. , 2008: Temporal persistence and stability of surface soil moisture in a semi-arid watershed. Remote Sens. Environ., 112, 304313.

    • Search Google Scholar
    • Export Citation
  • Crow, W. T., and Coauthors, 2005: An observing system simulation experiment for Hydros radiometer-only soil moisture products. IEEE Trans. Geosci. Remote Sens., 43, 12891303.

    • Search Google Scholar
    • Export Citation
  • de Jeu, R. A. M., Wagner W. , Holmes T. R. H. , Dolman A. J. , van de Griesen N. , and Friesen J. , 2008: Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv. Geophys., 29, 399420.

    • Search Google Scholar
    • Export Citation
  • de Jeu, R. A. M., Holmes T. R. H. , Panciera R. , and Walker J. P. , 2009: Parameterization of the land parameter retrieval model for L-band observations using the NAFE’05 data set. IEEE Geosci. Remote Sens. Lett., 6, 630634.

    • Search Google Scholar
    • Export Citation
  • De Lannoy, G., Reichle R. , Houser P. , Pauwels V. , and Verhoest N. , 2007: Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter. Water Resour. Res., 43, W09410, doi:10.1029/2006WR005449.

    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., and Coauthors, 2006: SMOSREX: A long term field campaign experiment for soil moisture and land surface processes remote sensing. Remote Sens. Environ., 102, 377389, doi:10.1016/j.rse.2006.02.021.

    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., and Coauthors, 2009: AMMA land surface model intercomparison experiment coupled to the Community Microwave Emission Model: ALMIP-MEM. J. Geophys. Res., 114, D05108, doi:10.1029/2008JD010724.

    • Search Google Scholar
    • Export Citation
  • Dobson, M., Ulaby F. , Hallikainen M. , and El-Rayes M. A. , 1985: Microwave dielectric behavior of wet soil—Part II: Dielectric mixing models. IEEE Trans. Geosci. Remote Sens., 23, 3546.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., Wood E. F. , and Jackson T. J. , 2001: Vegetation and atmospheric corrections for the soil moisture retrieval from passive microwave remote sensing data: Results from the Southern Great Plains Hydrology Experiment 1997. J. Hydrometeor., 2, 186192.

    • Search Google Scholar
    • Export Citation
  • Drusch, M., Holmes T. , de Rosnay P. , and Balsamo G. , 2009: Comparing ERA-40-based L-band brightness temperatures with Skylab observations: A calibration/validation study using the Community Microwave Emission Model. J. Hydrometeor., 10, 213226.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active and Passive (SMAP) mission. Proc. IEEE, 98, 704716.

  • Escorihuela, M. J., Kerr T. H. , de Rosnay P. , Wigneron J. , Calvet J. , and Lemaitre F. , 2007: A simple model of the bare soil microwave emission at L-band. IEEE Trans. Geosci. Remote Sens., 45, 19781987.

    • Search Google Scholar
    • Export Citation
  • Escorihuela, M. J., Chanzy A. , Wigneron J. , and Kerr Y. , 2010: Effective soil moisture sampling depth of L-band radiometry: A case study. Remote Sens. Environ., 114, 9951001.

    • Search Google Scholar
    • Export Citation
  • Ferrazzoli, P., Guerriero L. , Paloscia S. , and Pampaloni P. , 1995: Potential of multifrequency techniques in microwave radiometry of crops. Microwave Radiometry and Remote Sensing of the Environment, D. Solimini, Ed., VSP, 391–400.

  • Fitzmaurice, J. A., and Crow W. , 2011: Online vegetation parameter estimation using passive microwave observations for soil moisture estimation. Preprints, 25th Conf. on Hydrology, Seattle, WA, Amer. Meteor. Soc., 49. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper185647.html.]

    • Search Google Scholar
    • Export Citation
  • Grant, J., Wigneron J. , Van de Griend A. A. , Kruszewski A. , Sobjaerg S. S. , and Skou N. , 2007: A field experiment on microwave forest radiometry: L-band signal behaviour for varying conditions of surface wetness. IEEE Trans. Geosci. Remote Sens., 109, 1019.

    • Search Google Scholar
    • Export Citation
  • Grant, J., Saleh-Contell K. , Wigneron J. , Guglielmetti M. , Kerr Y. H. , Schwank M. , Skou S. , and Van de Griend A. A. , 2008: Calibration of the L-MEB model over a coniferous and deciduous forest. IEEE Trans. Geosci. Remote Sens., 46, 808818.

    • Search Google Scholar
    • Export Citation
  • Holmes, T. R. H., Drusch M. , Wigneron J. P. , and Jeu R. A. M. D. , 2008: A global simulation of microwave emission: Error structures based on output from ECMWF’s operational integrated forecast system. IEEE Trans. Geosci. Remote Sens., 46, 846856.

    • Search Google Scholar
    • Export Citation
  • Holmes, T. R. H., Jackson T. J. , Reichle R. H. , and Basara J. B. , 2012: An assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements. Water Resour. Res., 48, W02531, doi:10.1029/2011WR010538.

    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., 1993: Measuring surface soil moisture using passive microwave remote sensing. Hydrol. Processes, 7, 139152.

  • Jackson, T. J., and O’Neill P. , 1990: Attenuation of soil microwave emissivity by corn and soybeans at 1.4 and 5 GHz. IEEE Trans. Geosci. Remote Sens., 28, 978980.

    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., and Schmugge T. J. , 1991: Vegetation effects on the microwave emission of soils. Remote Sens. Environ., 36, 203212.

  • Jackson, T. J., Vine D. M. L. , Hsu A. Y. , Oldak A. , Starks P. J. , Swift C. T. , Isham J. D. , and Haken M. , 1999: Soil moisture mapping at regional scales using microwave radiometry: The southern Great Plains hydrology experiment. IEEE Trans. Geosci. Remote Sens., 37, 21362151.

    • Search Google Scholar
    • Export Citation
  • Jackson, T. J., and Coauthors, 2010: Validation of advanced microwave scanning radiometer soil moisture products. IEEE Trans. Geosci. Remote Sens., 48, 42564272.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J., and Eberhart R. , 1995: Particle swarm optimization. Proc. IEEE Int. Conf. on Neural Networks, Vol. 4, Piscataway, NJ, IEEE, 1942–1948.

  • Kerr, Y. H., and Njoku E. G. , 1990: A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space. IEEE Trans. Geosci. Remote Sens., 28, 384393.

    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and Coauthors, 2010: The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE, 98, 666687.

    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., and Coauthors, 2012: The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens., 50, 13841403.

  • Koster, R. D., Suarez M. J. , Ducharne A. , Stieglitz M. , and Kumar P. , 2000: A catchment-based approach to modeling land surface processes in a general circulation model 1. Model structure. J. Geophys. Res., 105 (D20), 24 80924 822.

    • Search Google Scholar
    • Export Citation
  • Kurum, M., O’Neill P. , Lang R. , Joseph A. , Cosh M. , and Jackson T. , 2012: Effective tree scattering and opacity at L-band. Remote Sens. Environ., 118, 19.

    • Search Google Scholar
    • Export Citation
  • Lacava, T., Matgen P. , Brocca L. , Bittelli M. , Pergola N. , Moramarco T. , and Tramutoli V. , 2012: A first assessment of the SMOS soil moisture product with in situ and modeled data in Italy and Luxembourg. IEEE Trans. Geosci. Remote Sens., 50, 16121622.

    • Search Google Scholar
    • Export Citation
  • Le Vine, D., Lagerloef G. S. E. , Colomb F. R. , Yueh S. H. , and Pellerano F. A. , 2007: An instrument to monitor sea surface salinity from space. IEEE Trans. Geosci. Remote Sens., 45, 20402050.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., Reichle R. , Bindlish R. , Cosh M. , de Jeu W. C. R. , De Lannoy G. , Huffman G. , and Jackson T. , 2011: The contribution of precipitation forcing and satellite observations of soil moisture on the skill of soil moisture estimates in a land data assimilation system. J. Hydrometeor., 12, 750765.

    • Search Google Scholar
    • Export Citation
  • Martín-Neira, M., and Coauthors, 2012: SMOS instrument performance and calibration. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Munich, Germany, IEEE, WE1.10.1.

  • Merlin, O., Walker J. P. , Panciera R. , Escorihuela M. J. , and Jackson T. J. , 2009: Assessing the SMOS soil moisture retrieval parameters with high-resolution NAFE’06 data. IEEE Geosci. Remote Sens. Lett., 6, 635639.

    • Search Google Scholar
    • Export Citation
  • Mironov, V., Dobson M. , Kaupp V. , Komarov S. , and Kleshchenko V. , 2004: Generalized refractive mixing dielectric model for moist soil. IEEE Trans. Geosci. Remote Sens., 42, 773785.

    • Search Google Scholar
    • Export Citation
  • Mo, T., and Schmugge T. J. , 1987: A parameterization of the effect of surface roughness on microwave emission. IEEE Trans. Geosci. Remote Sens., 25, 4754.

    • Search Google Scholar
    • Export Citation
  • Montzka, C., and Coauthors, 2013: Brightness temperature and soil moisture validation at different scales during the SMOS validation campaign in the Rur and Erft catchments, Germany. IEEE Trans. Geosci. Remote Sens., 51, 17281743.

    • Search Google Scholar
    • Export Citation
  • O’Neill, P., Njoku E. , Jackson T. , Chan S. , and Bindlish R. , 2012: SMAP Algorithm Theoretical Basis Document (ATBD): SMAP Level 2 &3 soil moisture (passive). Tech. Rep. SMAP Project JPL D-66481, Jet Propulsion Laboratory, Pasadena, CA, 75 pp. [Available online at http://smap.jpl.nasa.gov/files/smap2/L2&3_SM_P_InitRel_v1_filt2.pdf.]

  • Owe, M., de Jeu R. , and Holmes T. , 2008: Multi-sensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res., 113, F01002, doi:10.1029/2007JF000769.

    • Search Google Scholar
    • Export Citation
  • Pan, M., Sahoo A. , Wood W. , Al Bitar A. , Leroux D. , and Kerr Y. , 2012: An initial assessment of SMOS derived soil moisture over the continental United States. IEEE J. Sel. Top. Earth Obs. Remote Sens., 5, 14481457.

    • Search Google Scholar
    • Export Citation
  • Panciera, R., Walker J. P. , Kalma J. D. , Kim E. J. , Saleh K. , and Wigneron J.-P. , 2009a: Evaluation of the SMOS L-MEB passive microwave soil moisture retrieval algorithm. Remote Sens. Environ., 13, 435444.

    • Search Google Scholar
    • Export Citation
  • Panciera, R., Walker J. P. , and Merlin O. , 2009b: Improved understanding of soil surface roughness parameterization for L-band passive microwave soil moisture retrieval. IEEE Trans. Geosci. Remote Sens., 6, 625629.

    • Search Google Scholar
    • Export Citation
  • Pauwels, V. R. N., and De Lannoy G. J. M. , 2012: Multivariate calibration of a water and energy balance model in the spectral domain. Water Resour. Res., 47, W07523, doi:10.1029/2010WR010292.

    • Search Google Scholar
    • Export Citation
  • Pedersen, M. E. H., and Chipperfield A. , 2010: Simplifying particle swarm optimization. Appl. Soft Comput., 10, 618628.

  • Pellarin, T., and Coauthors, 2003: Two-year global simulation of L-band brightness temperatures over land. IEEE Trans. Geosci. Remote Sens., 42, 21352139.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., 2012: The MERRA-land data product (version 1.2). GMAO Office Note 3, 43 pp. [Available online at http://gmao.gsfc.nasa.gov/pubs/docs/Reichle541.pdf.]

  • Reichle, R. H., McLaughlin D. B. , and Entekhabi D. , 2001: Variational data assimilation of microwave radio brightness observations for land surface hydrology applications. IEEE Trans. Geosci. Remote Sens., 39, 17081718.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Kumar S. V. , Mahanama S. P. P. , Koster R. D. , and Liu Q. , 2010: Assimilation of satellite-derived skin temperature observations into land surface models. J. Hydrometeor., 11, 11031122.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Koster R. D. , De Lannoy G. J. M. , Forman B. A. , Liu Q. , Mahanama S. P. P. , and Toure A. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Crow W. , Koster R. , Kimball J. , and De Lannoy G. , 2012: SMAP Algorithm Theoretical Basis Document (ATBD): SMAP L4 surface and root zone soil moisture (L4_SM) data product. Tech. Rep. SMAP Project JPL D-66483, Jet Propulsion Laboratory, Pasadena, CA, 78 pp. [Available online at http://smap.jpl.nasa.gov/files/smap2/L4_SM_InitRel_v1.pdf.]

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648.

    • Search Google Scholar
    • Export Citation
  • Sabater, J. M., de Rosnay P. , and Balsamo G. , 2011: Sensitivity of L-band NWP forward modelling to soil roughness. Int. J. Remote Sens., 32, 56075620, doi:10.1080/01431161.2010.507260.

    • Search Google Scholar
    • Export Citation
  • Saleh, K., Wigneron J.-P. , de Rosnay P. , Calvet J.-C. , Scorihuela M. J. , Kerr Y. , and Waldteufel P. , 2006: Impact of rain interception by vegetation and mulch on the L-band emission of natural grass. Remote Sens. Environ., 101, 127139.

    • Search Google Scholar
    • Export Citation
  • Saleh, K., Wigneron J.-P. , Waldteufel P. , de Rosnay P. , Schwank M. , Calvet J.-C. , and Kerr Y. , 2007: Estimates of surface soil moisture under grass covers using L-band radiometry. Remote Sens. Environ., 109, 4253.

    • Search Google Scholar
    • Export Citation
  • Scheerlinck, K., Pauwels V. R. N. , Vernieuwe H. , and De Baets B. , 2009: Calibration of a water and energy balance model: Recursive parameter estimation versus particle swarm. Water Resour. Res., 45, W10422, doi:10.1029/2009WR008051.

    • Search Google Scholar
    • Export Citation
  • Schmugge, T., and Jackson T. J. , 1994: Mapping surface soil moisture with microwave radiometers. Meteor. Atmos. Phys., 54, 213223.

  • Trelea, I., 2003: The particle swarm optimization algorithm: Convergence analysis and parameter selection. Inf. Process. Lett., 85, 317325.

    • Search Google Scholar
    • Export Citation
  • van de Griend, A. A., and Wigneron J. , 2004: The b-factor as a function of frequency and canopy type at H-polarization. IEEE Trans. Geosci. Remote Sens., 42, 786794.

    • Search Google Scholar
    • Export Citation
  • van de Griend, A. A., Owe M. , de Ruiter J. , and Gouweleeuw B. , 1996: Measurement and behavior of the dual-polarization vegetation optical depth and single scattering albedo at 1.4- and 5-GHz microwave frequencies. IEEE Trans. Geosci. Remote Sens., 34, 957965.

    • Search Google Scholar
    • Export Citation
  • Vrugt, J. A., ter Braak C. , Diks C. , Robinson B. A. , Hyman J. M. , and Higdon D. , 2009: Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int. J. Nonlinear Sci. Numer. Simul., 10, 271288.

    • Search Google Scholar
    • Export Citation
  • Wang, J. R., and Schmugge T. J. , 1980: An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans. Geosci. Remote Sens., 18, 288295.

    • Search Google Scholar
    • Export Citation
  • Wang, J. R., and Choudhury B. J. , 1981: Remote sensing of soil moisture content over bare field at 1.4 GHz frequency. J. Geophys. Res., 86, 52775282.

    • Search Google Scholar
    • Export Citation
  • Wigneron, J.-P., Calvet J.-C. , Chanzy A. , and Kerr Y. H. , 1993: Microwave emission of vegetation: Sensitivity to leaf characteristics. IEEE Trans. Geosci. Remote Sens., 31, 716725.

    • Search Google Scholar
    • Export Citation
  • Wigneron, J.-P., Laguerre L. , and Kerr Y. H. , 2001: A simple parameterization of the L-band microwave emission from rough agricultural soils. IEEE Trans. Geosci. Remote Sens., 39, 16971707.

    • Search Google Scholar
    • Export Citation
  • Wigneron, J.-P., Chanzy A. , Calvet J.-C. , Olioso A. , and Kerr Y. H. , 2002: Modelling approaches to assimilating L band passive microwave observations over land surfaces. J. Geophys. Res., 107, 4219, doi:10.1029/2001JD000958.

    • Search Google Scholar
    • Export Citation
  • Wigneron, J.-P., and Coauthors, 2007: L-band microwave emission of the biosphere (L-MEB) model: Description and calibration against experimental data sets over crop fields. Remote Sens. Environ., 107, 639655.

    • Search Google Scholar
    • Export Citation
  • Wösten, J. H. M., Pachesky Ya. A. , and Rawls W. J. , 2001: Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol., 251, 123150.

    • Search Google Scholar
    • Export Citation
  • Yilmaz, M. T., Hunt E. R. , and Jackson T. J. , 2008: Remote sensing of vegetation water content from equivalent water thickness using satellite imagery. Remote Sens. Environ., 112, 25142522.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., Shi J. , and Dou Y. , 2012: A soil moisture assimilation scheme based on the microwave Land Emissivity Model and the Community Land Model. Int. J. Remote Sens., 33, 27702797.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 279 0 0
Full Text Views 7644 6701 518
PDF Downloads 436 132 19