Limits to Flood Forecasting in the Colorado Front Range for Two Summer Convection Periods Using Radar Nowcasting and a Distributed Hydrologic Model

Hernan A. Moreno School of Sustainable Engineering and the Built Environment, and Decision Center for a Desert City, Global Institute of Sustainability, Arizona State University, Tempe, Arizona

Search for other papers by Hernan A. Moreno in
Current site
Google Scholar
PubMed
Close
,
Enrique R. Vivoni School of Sustainable Engineering and the Built Environment, and School of Earth and Space Exploration, Arizona State University, Tempe, Arizona

Search for other papers by Enrique R. Vivoni in
Current site
Google Scholar
PubMed
Close
, and
David J. Gochis National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David J. Gochis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Flood forecasting in mountain basins remains a challenge given the difficulty in accurately predicting rainfall and in representing hydrologic processes in complex terrain. This study identifies flood predictability patterns in mountain areas using quantitative precipitation forecasts for two summer events from radar nowcasting and a distributed hydrologic model. The authors focus on 11 mountain watersheds in the Colorado Front Range for two warm-season convective periods in 2004 and 2006. The effects of rainfall distribution, forecast lead time, and basin area on flood forecasting skill are quantified by means of regional verification of precipitation fields and analyses of the integrated and distributed basin responses. The authors postulate that rainfall and watershed characteristics are responsible for patterns that determine flood predictability at different catchment scales. Coupled simulations reveal that the largest decrease in precipitation forecast skill occurs between 15- and 45-min lead times that coincide with rapid development and movements of convective systems. Consistent with this, flood forecasting skill decreases with nowcasting lead time, but the functional relation depends on the interactions between watershed properties and rainfall characteristics. Across the majority of the basins, flood forecasting skill is reduced noticeably for nowcasting lead times greater than 30 min. The authors identified that intermediate basin areas [~(2–20) km2] exhibit the largest flood forecast errors with the largest differences across nowcasting ensemble members. The typical size of summer convective storms is found to coincide well with these maximum errors, while basin properties dictate the shape of the scale dependency of flood predictability for different lead times.

Corresponding author address: Enrique R. Vivoni, School of Earth and Space Exploration, Arizona State University, ISTB4, Room 769, Tempe, AZ 85287-6004. E-mail: vivoni@asu.edu

Abstract

Flood forecasting in mountain basins remains a challenge given the difficulty in accurately predicting rainfall and in representing hydrologic processes in complex terrain. This study identifies flood predictability patterns in mountain areas using quantitative precipitation forecasts for two summer events from radar nowcasting and a distributed hydrologic model. The authors focus on 11 mountain watersheds in the Colorado Front Range for two warm-season convective periods in 2004 and 2006. The effects of rainfall distribution, forecast lead time, and basin area on flood forecasting skill are quantified by means of regional verification of precipitation fields and analyses of the integrated and distributed basin responses. The authors postulate that rainfall and watershed characteristics are responsible for patterns that determine flood predictability at different catchment scales. Coupled simulations reveal that the largest decrease in precipitation forecast skill occurs between 15- and 45-min lead times that coincide with rapid development and movements of convective systems. Consistent with this, flood forecasting skill decreases with nowcasting lead time, but the functional relation depends on the interactions between watershed properties and rainfall characteristics. Across the majority of the basins, flood forecasting skill is reduced noticeably for nowcasting lead times greater than 30 min. The authors identified that intermediate basin areas [~(2–20) km2] exhibit the largest flood forecast errors with the largest differences across nowcasting ensemble members. The typical size of summer convective storms is found to coincide well with these maximum errors, while basin properties dictate the shape of the scale dependency of flood predictability for different lead times.

Corresponding author address: Enrique R. Vivoni, School of Earth and Space Exploration, Arizona State University, ISTB4, Room 769, Tempe, AZ 85287-6004. E-mail: vivoni@asu.edu
Save
  • Anagnostou, M. N., Kalogiros J. , Anagnostou E. N. , Tarolli M. , Papadopoulos A. , and Borga M. , 2010: Performance evaluation of high-resolution rainfall estimation by X-band dual–polarization radar for flash-flood applications in mountainous basins. J. Hydrol., 394, 416.

    • Search Google Scholar
    • Export Citation
  • Ashley, S. T., and Ashley W. S. , 2008: Flood fatalities in the United States. J. Appl. Meteor. Climatol., 47, 805818.

  • Bear, J., 1972: Dynamics of Fluids in Porous Media. Elsevier, 764 pp.

  • Benoit, R., Pellerin P. , Kouwen N. , Ritchie H. , Donaldson N. , Joe P. , and Soulis E. D. , 2000: Toward the use of coupled atmospheric and hydrologic models at regional scale. Mon. Wea. Rev., 128, 16811706.

    • Search Google Scholar
    • Export Citation
  • Berenguer, M., Corral C. , Sánchez-Diezma R. , and Sempere-Torres D. , 2005: Hydrological validation of a radar-based nowcasting technique. J. Hydrometeor., 6, 532549.

    • Search Google Scholar
    • Export Citation
  • Birkeland, P., Shroba R. , Burns S. , Price A. , and Tonkin P. J. , 2003: Integrating soils and geomorphology in mountains: An example from the Front Range Colorado. Geomorphology, 55, 329344.

    • Search Google Scholar
    • Export Citation
  • Borga, M., 2002: Accuracy of radar rainfall estimates for streamflow simulation. J. Hydrol., 267, 3639.

  • Bowler, N. E. H., Pierce C. E. , and Seed A. , 2004: Development of a precipitation nowcasting algorithm based upon optical flow techniques. J. Hydrol., 288, 7491.

    • Search Google Scholar
    • Export Citation
  • Chiang, Y. M., Hsu K. L. , Chang F. J. , Hong Y. , and Sorooshian S. , 2007: Merging multiple precipitation sources for flash flood forecasting. J. Hydrol., 340, 183196.

    • Search Google Scholar
    • Export Citation
  • Chow, V. T., 1959: Open-Channel Hydraulics. McGraw-Hill, 680 pp.

  • Collier, C. G., 1991: The combined use of weather radar and mesoscale numerical model data for short-period rainfall forecasting. Hydrological Application of Weather Radar. I. D. Cluckie and C. G. Collier, Eds., E. Horwood, 644 pp.

  • Collier, C. G., 2007: Flash flood forecasting: What are the limits of predictability? Quart. J. Roy. Meteor. Soc., 133, 323.

  • Collier, C. G., and Krzysztofowicz R. , 2000: Quantitative precipitation forecasting. J. Hydrol., 239, 12.

  • Dance, S., Ebert E. , and Scurrah D. , 2010: Thunderstorm strike probability nowcasting. J. Atmos. Oceanic Technol., 27, 7993.

  • Dixon, M., and Wiener G. , 1993: TITAN: Thunderstorm Identification, Tracking, Analysis and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785795.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., Gupta V. K. , and Sorooshian S. , 1993: A shuffled complex evolution approach for effective and efficient optimization. J. Optim. Theory Appl., 76, 501521.

    • Search Google Scholar
    • Export Citation
  • Ganguly, A. R., and Bras R. L. , 2003: Distributed quantitative precipitation forecasting using information from radar and numerical weather prediction models. J. Hydrometeor., 4, 11681180.

    • Search Google Scholar
    • Export Citation
  • Garrote, L., and Bras R. L. , 1995: A distributed model for real-time flood forecasting using digital elevation models. J. Hydrol., 167, 279306.

    • Search Google Scholar
    • Export Citation
  • Germann, U., Berenguer M. , Sempere-Torres D. , and Zappa M. , 2009: REAL—Ensemble radar precipitation estimation for hydrology in a mountainous region. Quart. J. Roy. Meteor. Soc., 135, 445456.

    • Search Google Scholar
    • Export Citation
  • Gesch, D., Oimoen M. , Greenlee S. , Nelson C. , Steuck M. , and Tyler D. , 2002: The national elevation dataset. Photogramm. Eng. Remote Sens., 68, 511.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., Nesbitt S. , Yu W. , and Williams S. F. , 2009: Assessment of quantitative precipitation estimates from space-borne platforms during the 2004 North American Monsoon Experiment. Atmosfera, 22, 6998.

    • Search Google Scholar
    • Export Citation
  • Golding, B. W., 2000: Quantitative precipitation forecasting in the UK. J. Hydrol., 239, 286305.

  • Gupta, V. K., 2004: Emergence of statistical scaling in floods on channel networks from complex runoff dynamics. Chaos, Solitons Fractals, 19, 357365.

    • Search Google Scholar
    • Export Citation
  • Homer, C., Huang C. , Yang L. , Wylie B. , and Coan M. , 2004: Development of a 2001 National Landcover Database for the United States. Photogramm. Eng. Remote Sen., 70, 829840.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., Anagnostou E. N. , Borga M. , and Dinku T. , 2004: Hydrological model sensitivity to parameter and radar rainfall estimation uncertainty. Hydrol. Processes, 18, 32773299.

    • Search Google Scholar
    • Export Citation
  • Ivanov, V. Y., Vivoni E. R. , Bras R. L. , and Entekhabi D. , 2004a: Catchment hydrologic response with a fully distributed triangulated irregular network model. Water Resour. Res., 40, W11102, doi:10.1029/2004WR003218.

    • Search Google Scholar
    • Export Citation
  • Ivanov, V. Y., Vivoni E. R. , Bras R. L. , and Entekhabi D. , 2004b: Preserving high-resolution surface and rainfall data in operational-scale basin hydrology: A fully-distributed physically-based approach. J. Hydrol., 298, 80111.

    • Search Google Scholar
    • Export Citation
  • Jarret, R. D., and Tomlinson E. , 2000: Regional interdisciplinary paleoflood approach to assess extreme flood potential. Water Resour. Res., 36, 29572984.

    • Search Google Scholar
    • Export Citation
  • Joe, P., Burgess D. , Potts R. , Keenan T. , Stumpf G. , and Treloar A. , 2004: The S2K severe weather detection algorithms and their performance. Wea. Forecasting, 19, 4363.

    • Search Google Scholar
    • Export Citation
  • Li, P. W., and Lai E. S. T. , 2004: Short-range quantitative precipitation forecasting in Hong Kong. J. Hydrol., 288, 189209.

  • Lin, C., Vasić S. , Kilambi A. , Turner B. , and Zawadzki I. , 2005: Precipitation forecast skill of numerical weather prediction models and radar nowcasts. Geophys. Res. Lett., 32, L14801, doi:10.1029/2005GL023451.

    • Search Google Scholar
    • Export Citation
  • Mascaro, G., Vivoni E. R. , and Deidda R. , 2010a: Implications of ensemble quantitative precipitation forecast errors on distributed streamflow forecasting. J. Hydrometeor., 11, 6986.

    • Search Google Scholar
    • Export Citation
  • Mascaro, G., Vivoni E. R. , and Deidda R. , 2010b: Physical controls on the scale-dependence of ensemble streamflow forecast dispersion. Nat. Hazards Earth Syst. Sci., 10, 16051615.

    • Search Google Scholar
    • Export Citation
  • Mass, C., 2012: Nowcasting: The promise of new technologies of communication, modeling and observation. Bull. Amer. Meteor. Soc., 93, 797809.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Moreno, H. A., Vivoni E. R. , and Gochis D. J. , 2012: Utility of quantitative precipitation estimates for high resolution hydrologic forecasts in mountain watersheds of the Colorado Front Range. J. Hydrol., 438–439, 6683.

    • Search Google Scholar
    • Export Citation
  • Moreno, H. A., Vivoni E. R. , and Gochis D. J. , 2013: Addressing uncertainty in rainfall-reflectivity relations in mountain watersheds during summer convection. Hydrol. Processes, doi:10.1002/hyp.9600, in press.

    • Search Google Scholar
    • Export Citation
  • Ogden, F. L., and Dawdy D. R. , 2003: Peak discharge scaling in a small Hortonian watershed. J. Hydrol. Eng., 123, 386393.

  • Pessoa, M. L., Bras R. L. , and Williams E. R. , 1993: Use of weather radar for flood forecasting in the Sieve River basin: A sensitivity analysis. J. Appl. Meteor., 32, 462475.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and Coauthors, 1999: Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bull. Amer. Meteor. Soc., 80, 191216.

    • Search Google Scholar
    • Export Citation
  • Pierce, C. E., and Coauthors, 2004: The nowcasting of precipitation during Sydney 2000: An appraisal of the QPF algorithms. Wea. Forecasting, 19, 721.

    • Search Google Scholar
    • Export Citation
  • Rawls, W. J., Brakensiek D. L. , and Saxton K. E. , 1982: Estimation of soil water properties. Trans. ASAE, 25, 13161320.

  • Reed, S., Schaake J. , and Zhang Z. , 2007: A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations. J. Hydrol., 337, 402420.

    • Search Google Scholar
    • Export Citation
  • Rinehart, A. J., Vivoni E. R. , and Brooks P. D. , 2008: Effects of vegetation, albedo and solar radiation sheltering on the distribution of snow in the Valles Caldera, New Mexico. Ecohydrology, 115, 253270.

    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., Anderson A. , Nelson E. , Brown B. G. , Wilson J. W. , Pocernich M. , and Saxen T. , 2012: Impacts of forecaster involvement on convective storm initiation and evolution nowcasting. Wea. Forecasting, 27, 10611089.

    • Search Google Scholar
    • Export Citation
  • Rutter, A. J., and Morton A. J. , 1977: A predictive model of rainfall interception in forests: Sensitivity of the model to stand parameters and meteorological variables. J. Appl. Ecol., 14, 567588.

    • Search Google Scholar
    • Export Citation
  • Sangati, M., and Borga M. , 2009: Influence of rainfall spatial resolution on flash flood modelling. Nat. Hazard Earth Sys., 9, 575584.

    • Search Google Scholar
    • Export Citation
  • Sangati, M., Borga M. , Rabuffetti D. , and Bechini R. , 2009: Influence of rainfall and soil properties spatial aggregation on extreme flash flood response modelling: An evaluation based on the Sesia River basin, north western Italy. Adv. Water Resour., 32, 10901106.

    • Search Google Scholar
    • Export Citation
  • Schröter, K., Llort X. , Velasco-Forero C. , Ostrowski M. , and Sempere-Torres D. , 2011: Implications of radar rainfall estimates uncertainty on distributed hydrological model predictions. Atmos. Res., 100, 237245.

    • Search Google Scholar
    • Export Citation
  • Sharif, H. O., Yates D. , Roberts R. , and Mueller C. , 2006: The use of an automated nowcasting system to forecast flash floods in an urban watershed. J. Hydrometeor., 7, 190202.

    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 1988: Evaporation from Amazonian rainforest. Proc. Roy. Soc. London, B233, 321346.

  • Steenburgh, J. W., 2003: One hundred inches in one hundred hours: Evolution of a Wasatch Mountain winter storm cycle. Wea. Forecasting, 18, 10181036.

    • Search Google Scholar
    • Export Citation
  • Todd, D. K., and Mays L. W. , 2005: Groundwater Hydrology. 3rd ed. John Wiley and Sons, 656 pp.

  • Van Horne, M. P., Vivoni E. R. , Entekhabi D. , Hoffman R. N. , and Grassotti C. , 2006: Evaluating the effects of image filtering in short-term radar rainfall forecasting for hydrological applications. Meteor. Appl., 13, 289303.

    • Search Google Scholar
    • Export Citation
  • Verbunt, M., Walser A. , Gurtz J. , Montani A. , and Schär C. , 2007: Probabilistic flood forecasting with a limited-area ensemble prediction system: Selected case studies. J. Hydrometeor., 8, 897909.

    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., Ivanov V. Y. , Bras R. L. , and Entekhabi D. , 2004: Generation of triangulated irregular networks based on hydrological similarity. J. Hydrol. Eng., 9, 288302.

    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., Entekhabi D. , Bras R. L. , Ivanov V. Y. , Van Horne M. P. , Grassotti C. , and Hoffman R. N. , 2006: Extending the predictability of hydrometeorological flood events using radar rainfall nowcasting. J. Hydrometeor., 7, 660677.

    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., Entekhabi D. , Bras R. L. , and Ivanov V. Y. , 2007a: Controls on runoff generation and scale-dependence in a distributed hydrologic model. Hydrol. Earth Syst. Sci., 11, 16831701.

    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., Entekhabi D. , and Hoffman R. N. , 2007b: Error propagation of radar rainfall nowcasting fields through a fully-distributed flood forecasting model. J. Appl. Meteor. Climatol., 46, 932940.

    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., Di Benedetto F. , Grimaldi S. , and Eltahir E. A. B. , 2008: Hypsometric control on surface and subsurface runoff. Water Resour. Res., 44, W12502, doi:10.1029/2008WR006931.

    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., Tai K. , and Gochis D. J. , 2009: Effects of initial soil moisture on rainfall generation and subsequent hydrologic response during the North American monsoon. J. Hydrometeor., 10, 644664.

    • Search Google Scholar
    • Export Citation
  • Vivoni, E. R., Mascaro G. , Mniszewski S. , Fasel P. , Springer E. P. , Ivanov V. Y. , and Bras R. L. , 2011: Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment. J. Hydrol., 409, 483496.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and Melesse A. , 2006: Effects of STATSGO and SSURGO as inputs on SWAT model's snowmelt simulation. J. Amer. Water Resour. Assoc., 42, 12171236.

    • Search Google Scholar
    • Export Citation
  • Warner, T., Edward T. , Brandes A. , Sun J. , Yates D. N. , and Mueller C. K. , 2000: Prediction of a flash flood in complex terrain. Part I: A comparison of rainfall estimates from radar, and very short range rainfall simulations from a dynamic model and an automated algorithmic system. J. Appl. Meteor., 39, 797814.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006. Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 676 pp.

  • Yates, D., Warner T. T. , Brandes E. A. , Leavesley G. H. , Sun J. , and Mueller C. K. , 2001: Evaluation of flash-flood discharge forecasts in complex terrain using precipitation. J. Hydrol. Eng., 6, 265274.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 648 0 0
Full Text Views 2870 1490 64
PDF Downloads 268 84 9