• Ashley, W. S., , Bentley M. L. , , and Stallins J. A. , 2012: Urban-induced thunderstorm modification in the southeast United States. Climatic Change, 113, 481498.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , Ball J. H. , , Beljaars A. C. M. , , Miller M. J. , , and Viterbo P. A. , 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101, 72097225.

    • Search Google Scholar
    • Export Citation
  • Bornstein, R., , and Lin Q. L. , 2000: Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ., 34, 507516.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 2005: Hydrology: An introduction. Cambridge University Press, 605 pp.

  • Chen, F., and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288.

    • Search Google Scholar
    • Export Citation
  • Dixon, P. G., , and Mote T. L. , 2003: Patterns and causes of Atlanta's urban heat island-initiated precipitation. J. Appl. Meteor., 42, 12731284.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., , Yao Y. , , Yarosh E. S. , , Janowiak J. E. , , and Mo K. C. , 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., , and Lim J. J. , 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S. Y., , Lim K. S. , , Lee Y. H. , , Ha J. C. , , Kim H. W. , , Ham S. J. , , and Dudhia J. , 2010: Evaluation of the WRF Double-Moment 6-Class Microphysics Scheme for Precipitating Convection. Adv. Meteor., 2010, 707253, doi:10.1155/2010/707253.

    • Search Google Scholar
    • Export Citation
  • Jankov, I., , Gallus W. A. , , Segal M. , , Shaw B. , , and Koch S. E. , 2005: The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Wea. Forecasting, 20, 10481060.

    • Search Google Scholar
    • Export Citation
  • Jiang, X. Y., , Wiedinmyer C. , , Chen F. , , Yang Z. L. , , and Lo J. C. F. , 2008: Predicted impacts of climate and land use change on surface ozone in the Houston, Texas, area. J. Geophys. Res., 113, D20312, doi:10.1029/2008JD009820.

    • Search Google Scholar
    • Export Citation
  • Jin, M. L., , and Shepherd J. M. , 2008: Aerosol relationships to warm season clouds and rainfall at monthly scales over east China: Urban land versus ocean. J. Geophys. Res., 113, D24S90, doi:10.1029/2008JD010276.

    • Search Google Scholar
    • Export Citation
  • Jin, M. L., , Shepherd J. M. , , and Zheng W. Z. , 2010: Urban surface temperature reduction via the urban aerosol direct effect: A remote sensing and WRF model sensitivity study. Adv. Meteor., 2010, 681587, doi:10.1155/2010/681587.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., and Coauthors, 2011: Towards better utilization of NEXRAD data in hydrology: An overview of Hydro-NEXRAD. J. Hydroinformatics, 13, 255266.

    • Search Google Scholar
    • Export Citation
  • Lee, S. H., and Coauthors, 2011: Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign. Atmos. Chem. Phys., 11, 21272143.

    • Search Google Scholar
    • Export Citation
  • Lim, K. S. S., , and Hong S. Y. , 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612.

    • Search Google Scholar
    • Export Citation
  • Lin, C. Y., , Chen W. C. , , Chang P. L. , , and Sheng Y. F. , 2011: Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan. J. Appl. Meteor. Climatol., 50, 339353.

    • Search Google Scholar
    • Export Citation
  • Loose, T., , and Bornstein R. D. , 1977: Observations of mesoscale effects on frontal movement through an urban area. Mon. Wea. Rev., 105, 563571.

    • Search Google Scholar
    • Export Citation
  • Miao, S. G., , Chen F. , , Li Q. C. , , and Fan S. Y. , 2011: Impacts of urban processes and urbanization on summer precipitation: A case study of heavy rainfall in Beijing on 1 August 2006. J. Appl. Meteor. Climatol., 50, 806825.

    • Search Google Scholar
    • Export Citation
  • Niyogi, D., and Coauthors, 2011: Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteor. Climatol., 50, 11291144.

    • Search Google Scholar
    • Export Citation
  • Ntelekos, A. A., , Smith J. A. , , and Krajewski W. F. , 2007: Climatological analyses of thunderstorms and flash floods in the Baltimore metropolitan region. J. Hydrometeor., 8, 88101.

    • Search Google Scholar
    • Export Citation
  • Ntelekos, A. A., , Smith J. A. , , Baeck M. L. , , Krajewski W. F. , , Miller A. J. , , and Goska R. , 2008: Extreme hydrometeorological events and the urban environment: Dissecting the 7 July 2004 thunderstorm over the Baltimore MD metropolitan region. Water Resour. Res., 44, W08446, doi:10.1029/2007WR006346.

    • Search Google Scholar
    • Export Citation
  • Ntelekos, A. A., , Smith J. A. , , Donner L. , , Fast J. D. , , Gustafson W. I. , , Chapman E. G. , , and Krajewski W. F. , 2009: The effects of aerosols on intense convective precipitation in the northeastern United States. Quart. J. Roy. Meteor. Soc., 135, 13671391.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev. Geophys., 39, 151177.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 17931796.

  • Shem, W., , and Shepherd M. , 2009: On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmos. Res., 92, 172189.

    • Search Google Scholar
    • Export Citation
  • Shephard, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9 . [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., , Carter M. , , Manyin M. , , Messen D. , , and Burian S. , 2010: The impact of urbanization on current and future coastal precipitation: a case study for Houston. Environ. Plann., 37B, 284304.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., , and Klemp J. B. , 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., , Baeck M. L. , , Villarini G. , , Welty C. , , Miller A. J. , , and Krajewski W. F. , 2012: Analyses of a long-term, high-resolution radar rainfall data set for the Baltimore metropolitan region. Water Resour. Res., 48, W04504, doi:10.1029/2011WR010641.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711.

  • Talbot, C., , Bou-Zeid E. , , and Smith J. , 2012: Nested mesoscale large-eddy simulations with WRF: Performance in real test cases. J. Hydrometeor., 13, 14211441.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., , Chen F. , , and Manning K. W. , 2004: A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions. Mon. Wea. Rev., 132, 29542976.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., , Chen F. , , Manning K. W. , , LeMone M. A. , , and Davis C. A. , 2008: Sensitivity of the PBL and precipitation in 12-day simulations of warm-season convection using different land surface models and soil wetness conditions. Mon. Wea. Rev., 136, 23212343.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., , LeMone M. A. , , Chen F. , , and Manning K. W. , 2011: Effects of surface heat and moisture exchange on ARW-WRF warm-season precipitation forecasts over the central United States. Wea. Forecasting, 26, 325.

    • Search Google Scholar
    • Export Citation
  • Wang, Z. H., , Bou-Zeid E. , , Au S. K. , , and Smith J. A. , 2011: Analyzing the sensitivity of WRF's single-layer urban canopy model to parameter uncertainty using advanced Monte Carlo simulation. J. Appl. Meteor. Climatol., 50, 17951814.

    • Search Google Scholar
    • Export Citation
  • Wang, Z. H., , Bou-Zeid E. , , and Smith J. A. , 2013: A coupled energy transport and hydrological model for urban canopies evaluated using a wireless sensor network. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2032, in press.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., and Coauthors, 2011: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water. Water Resour. Res.,47, W05301, doi:10.1029/2010WR010090.

  • Wright, D. B., , Smith J. A. , , Villarini G. , , and Baeck M. L. , 2012: Hydroclimatology of flash flooding in Atlanta. Water Resour. Res., 48, W04524, doi:10.1029/2011WR011371.

    • Search Google Scholar
    • Export Citation
  • Yeung, J. K., , Smith J. A. , , Villarini G. , , Ntelekos A. A. , , Baeck M. L. , , and Krajewski W. F. , 2011: Analyses of the warm season rainfall climatology of the northeastern US using regional climate model simulations and radar rainfall fields. Adv. Water Resour., 34, 184204.

    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., , and Fritsch J. M. , 1986: Numerical simulation of the meso-β scale structure and evolution of the 1977 Johnstown Flood. Part I: Model description and verification. J. Atmos. Sci., 43, 19131943.

    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., , Zhang S. L. , , and Weaver S. J. , 2006: Low-level jets over the Mid-Atlantic states: Warm-season climatology and a case study. J. Appl. Meteor. Climatol., 45, 194209.

    • Search Google Scholar
    • Export Citation
  • Zhang, D. L., , Shou Y. X. , , Dickerson R. R. , , and Chen F. , 2011: Impact of upstream urbanization on the urban heat island effects along the Washington–Baltimore corridor. J. Appl. Meteor. Climatol., 50, 20122029.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , Smith J. A. , , Ntelekos A. A. , , Baeck M. L. , , Krajewski W. F. , , and Moshary F. , 2009: Structure and evolution of precipitation along a cold front in the northeastern United States. J. Hydrometeor., 10, 12431256.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 106 106 22
Full Text Views 12 12 1
PDF Downloads 20 20 3

Modeling Land Surface Processes and Heavy Rainfall in Urban Environments: Sensitivity to Urban Surface Representations

View More View Less
  • 1 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
  • | 2 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, and Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York
  • | 3 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
© Get Permissions
Restricted access

Abstract

High-resolution simulations with the Weather Research and Forecasting Model (WRF) are used in conjunction with observational analyses to investigate land surface processes and heavy rainfall over the Baltimore–Washington metropolitan area. Analyses focus on a 6-day period, 21–26 July 2008, which includes a major convective rain event (23–24 July), a prestorm period (21–22 July), and a dry-down period (25–26 July). The performance of WRF in capturing land–atmosphere interactions, the bulk structure of the atmospheric boundary layer, and the rainfall pattern in urban environments is explored. Results indicate that WRF captures the incoming radiative fluxes and surface meteorological conditions. Mean profiles of potential temperature and humidity in the atmosphere are also relatively well reproduced, both preceding and following the heavy rainfall period. However, wind features in the lower atmosphere, including low-level jets, are not accurately reproduced by WRF. The biases in the wind fields play a central role in determining errors in WRF-simulated rainfall fields. The study also investigates the sensitivity of WRF simulations to different urban surface representations. It is found that urban surface representations have a significant impact on the surface energy balance and the rainfall distribution. As the impervious fraction increases, the sensible heat flux and the ground heat flux increase, while the latent heat flux decreases. The impact of urban surface representations on precipitation is as significant as that of microphysical parameterizations. The fact that changing urban surface representations can significantly alter the rainfall field suggests that urbanization plays an important role in modifying the regional precipitation pattern.

Corresponding author address: Dan Li, Department of Civil and Environmental Engineering, Princeton University, 59 Olden St., Princeton, NJ 08544. E-mail: danl@princeton.edu

Abstract

High-resolution simulations with the Weather Research and Forecasting Model (WRF) are used in conjunction with observational analyses to investigate land surface processes and heavy rainfall over the Baltimore–Washington metropolitan area. Analyses focus on a 6-day period, 21–26 July 2008, which includes a major convective rain event (23–24 July), a prestorm period (21–22 July), and a dry-down period (25–26 July). The performance of WRF in capturing land–atmosphere interactions, the bulk structure of the atmospheric boundary layer, and the rainfall pattern in urban environments is explored. Results indicate that WRF captures the incoming radiative fluxes and surface meteorological conditions. Mean profiles of potential temperature and humidity in the atmosphere are also relatively well reproduced, both preceding and following the heavy rainfall period. However, wind features in the lower atmosphere, including low-level jets, are not accurately reproduced by WRF. The biases in the wind fields play a central role in determining errors in WRF-simulated rainfall fields. The study also investigates the sensitivity of WRF simulations to different urban surface representations. It is found that urban surface representations have a significant impact on the surface energy balance and the rainfall distribution. As the impervious fraction increases, the sensible heat flux and the ground heat flux increase, while the latent heat flux decreases. The impact of urban surface representations on precipitation is as significant as that of microphysical parameterizations. The fact that changing urban surface representations can significantly alter the rainfall field suggests that urbanization plays an important role in modifying the regional precipitation pattern.

Corresponding author address: Dan Li, Department of Civil and Environmental Engineering, Princeton University, 59 Olden St., Princeton, NJ 08544. E-mail: danl@princeton.edu
Save