Evaluation of Turbulent Surface Flux Parameterizations over Tall Grass in a Beijing Suburb

Linlin Wang State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Linlin Wang in
Current site
Google Scholar
PubMed
Close
,
Zhiqiu Gao State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Zhiqiu Gao in
Current site
Google Scholar
PubMed
Close
,
Zaitao Pan Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, Missouri

Search for other papers by Zaitao Pan in
Current site
Google Scholar
PubMed
Close
,
Xiaofeng Guo State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xiaofeng Guo in
Current site
Google Scholar
PubMed
Close
, and
Elie Bou-Zeid Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Elie Bou-Zeid in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Numerical weather and climate prediction systems necessitate accurate land surface–atmosphere fluxes, whose determination typically replies on a suite of parameterization schemes. The authors present a field investigation over tall grass in a Beijing suburb, where the aerodynamic roughness length (z0) and zero-plane displacement height (d) are found to be 0.02 and 0.44 m, respectively (the value of d is close to two-thirds the average grass height during this field experiment). Both z0 and d values are then used as input parameters of an analytic model of flux footprint; the footprint model reveals that eddy-covariance flux measurements are mainly representative of the tall grass surface concerned herein, potential influences from anthropogenic sources in this suburban area notwithstanding. Based on the “fair weather” data (with an energy balance ratio of 0.89), the authors evaluate four parameterizations of turbulent surface fluxes, namely, a total of three traditional “iterative” schemes and one “noniterative” scheme developed recently to reduce computational time. Their performances are intercompared in terms of the estimations of the sensible heat flux and two turbulence components (the friction velocity and temperature scale). In weakly stable to unstable conditions, two schemes are recommended here for their good performance overall; the first scheme stems jointly from the work of Högström and Beljaars and Holtslag, and the second stems from that of Li et al.. For this tall grass surface, the choice of z0/z0h = 100 (z0h is the thermal roughness length) is more appropriate than another choice of 10, because the former produces comparatively accurate sensible heat flux estimations.

Corresponding author address: Zhiqiu Gao, State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Bldg. 40, Huayanli, Chaoyang, Beijing 100029, China. E-mail: zgao@mail.iap.ac.cn

Abstract

Numerical weather and climate prediction systems necessitate accurate land surface–atmosphere fluxes, whose determination typically replies on a suite of parameterization schemes. The authors present a field investigation over tall grass in a Beijing suburb, where the aerodynamic roughness length (z0) and zero-plane displacement height (d) are found to be 0.02 and 0.44 m, respectively (the value of d is close to two-thirds the average grass height during this field experiment). Both z0 and d values are then used as input parameters of an analytic model of flux footprint; the footprint model reveals that eddy-covariance flux measurements are mainly representative of the tall grass surface concerned herein, potential influences from anthropogenic sources in this suburban area notwithstanding. Based on the “fair weather” data (with an energy balance ratio of 0.89), the authors evaluate four parameterizations of turbulent surface fluxes, namely, a total of three traditional “iterative” schemes and one “noniterative” scheme developed recently to reduce computational time. Their performances are intercompared in terms of the estimations of the sensible heat flux and two turbulence components (the friction velocity and temperature scale). In weakly stable to unstable conditions, two schemes are recommended here for their good performance overall; the first scheme stems jointly from the work of Högström and Beljaars and Holtslag, and the second stems from that of Li et al.. For this tall grass surface, the choice of z0/z0h = 100 (z0h is the thermal roughness length) is more appropriate than another choice of 10, because the former produces comparatively accurate sensible heat flux estimations.

Corresponding author address: Zhiqiu Gao, State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Bldg. 40, Huayanli, Chaoyang, Beijing 100029, China. E-mail: zgao@mail.iap.ac.cn
Save
  • Andreas, E. L, 1987: A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Bound.-Layer Meteor., 38, 159184.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 2002: Parameterizing scalar transfer over snow and ice: A review. J. Hydrometeor., 3, 417432.

  • Andreas, E. L, Claffey K. J. , Jordan R. E. , Fairall C. W. , Guest P. S. , Persson P. O. , and Grachev A. A. , 2006: Evaluations of the von Karman constant in the atmospheric surface layer. J. Fluid Mech., 559, 117149.

    • Search Google Scholar
    • Export Citation
  • Aubinet, M., Vesala T. , and Papale D. , 2012: Eddy Covariance—A Practical Guide to Measurement and Data Analysis. Springer, 438 pp.

  • Ban, J., Gao Z. , and Lenschow D. H. , 2010: Climate simulations with a new air-sea turbulent flux parameterization in the National Center for Atmospheric Research Community Atmosphere Model (CAM3). J. Geophys. Res., 115, D01106, doi:10.1029/2009JD012802.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and Holtslag A. A. M. , 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341.

    • Search Google Scholar
    • Export Citation
  • Bi, X., and Coauthors, 2007: Seasonal and diurnal variations in moisture, heat, and CO2 fluxes over grassland in the tropical monsoon region of southern China. J. Geophys. Res.,112, D10106, doi:10.1029/2006JD007889.

  • Bian, L., Xu X. , Lu L. , Gao Z. , Zhou M. , and Liu H. , 2003: Analyses of turbulence parameters in the near-surface layer at Qamdo of the southeastern Tibetan Plateau. Adv. Atmos. Sci., 20, 369378.

    • Search Google Scholar
    • Export Citation
  • Bian, L., and Coauthors, 2012: Seasonal variation in turbulent fluxes over Tibetan Plateau and its surrounding areas. J. Meteor. Soc. Japan, 90C, 115.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., Wyngaard J. C. , Izumi Y. , and Bardley E. F. , 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189.

    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., Parish T. R. , and King J. C. , 2001: Evaluation of turbulent surface flux parameterizations for the stable surface layer over Halley, Antarctica. Mon. Wea. Rev., 129, 2646.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Yang K. , Zhou D. , Qin J. , and Guo X. , 2010: Improving Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. J. Hydrometeor., 11, 9951006.

    • Search Google Scholar
    • Export Citation
  • Choi, T., and Coauthors, 2004: Turbulent exchange of heat, water vapor, and momentum over a Tibetan prairie by eddy covariance and flux variance measurements. J. Geophys. Res., 109, D21106, doi:10.1029/2004JD004767.

    • Search Google Scholar
    • Export Citation
  • De Vries, D. A., 1963: Thermal properties of soils. Physics of Plant Environment, W. R. van Wijk, Ed., North-Holland Publishing, 210–235.

  • Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363372.

  • Foken, T., 2008: The energy balance closure problem: An overview. Ecol. Appl., 18, 13511367.

  • Foken, T., and Wichura B. , 1996: Tools for quality assessment of surface-based flux measurements. Agric. For. Meteor., 78, 83105.

  • Foken, T., Göckede M. , Mauder M. , Mahrt L. , Amiro B. , and Munger W. , 2004: Post-field data quality control. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis, X. Lee, W. Massman, and B. Law, Eds., Kluwer, 181–208.

  • Gao, Z., Chae N. , Kim J. , Hong J. , Choi T. , and Lee H. , 2004: Modeling of surface energy partitioning, surface temperature, and soil wetness in the Tibetan prairie using the Simple Biosphere Model 2 (SiB2). J. Geophys. Res.,109, D06102, doi:10.1029/2003JD004089.

  • Gao, Z., Bian L. , Chen Z. , Sparrow M. , and Zhang J. , 2006: Turbulent variance characteristics of temperature and humidity over a non-uniform land surface for an agricultural ecosystem in China. Adv. Atmos. Sci., 23, 365374.

    • Search Google Scholar
    • Export Citation
  • Gao, Z., Lenschow D. H. , He Z. , and Zhou M. , 2009: Seasonal and diurnal variations in moisture, heat and CO2 fluxes over typical steppe prairie in Inner Mongolia, China. Hydrol. Earth Syst. Sci., 13, 987998.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Guo, X., and Zhang H. , 2007: A performance comparison between nonlinear similarity functions in bulk parameterization for very stable conditions. Environ. Fluid Mech., 7, 239257.

    • Search Google Scholar
    • Export Citation
  • Guo, X., Zhang H. , Cai X. , Kang L. , Li W. , and Du J. , 2007: Discrepancy and applicability of various similarity functions in flux calculations under stable conditions. Adv. Atmos. Sci., 24, 644654.

    • Search Google Scholar
    • Export Citation
  • Guo, X., Zhang H. , Cai X. , Kang L. , Zhu T. , and Leclerc M. Y. , 2009: Flux-variance method for latent heat and carbon dioxide fluxes in unstable conditions. Bound.-Layer Meteor., 131, 363384.

    • Search Google Scholar
    • Export Citation
  • Guo, X., Yang K. , Zhao L. , Yang W. , Li S. , Zhu M. , Yao T. , and Chen Y. , 2011: Critical evaluation of scalar roughness length parametrizations over a melting valley glacier. Bound.-Layer Meteor., 139, 307332.

    • Search Google Scholar
    • Export Citation
  • Hiller, R. V., McFadden J. P. , and Kljun N. , 2011: Interpreting CO2 fluxes over a suburban lawn: The influence of traffic emissions. Bound.-Layer Meteor., 138, 215230.

    • Search Google Scholar
    • Export Citation
  • Högström, U., 1996: Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteor., 78, 215246.

  • Holt, T. R., Niyogi D. , Chen F. , Manning K. , LeMone M. A. , and Qureshi A. , 2006: Effect of land–atmosphere interactions on IHOP 24–25 May 2002 convection case. Mon. Wea. Rev., 134, 113133.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and de Bruin H. A. R. , 1988: Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteor., 27, 689704.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. K., Højstrup J. , Vested H. J. , and Larsen S. E. , 1998: On the dependence of sea surface roughness on wind waves. J. Phys. Oceanogr., 28, 17021716.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and Finnigan J. J. , 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Cambridge University Press, 289 pp.

  • Kaimal, J. C., Wyngaard J. C. , Izumi Y. , and Coté O. R. , 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563589.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., Brümmer C. , Black T. A. , Morgenstern K. , Nesic Z. , McCaughey J. H. , and Barr A. G. , 2010: Energy balance closure using eddy covariance above two different land surfaces and implications for CO2 flux measurements. Bound.-Layer Meteor., 136, 193218.

    • Search Google Scholar
    • Export Citation
  • Kilinc, M., Beringer J. , Hutley L. B. , Haverd V. , and Tapper N. , 2012: An analysis of the surface energy budget above the world's tallest angiosperm forest. Agric. For. Meteor., 166–167, 2331.

    • Search Google Scholar
    • Export Citation
  • Laubach, J., and Teichmann U. , 1999: Surface energy budget variability: A case study over grass with special regard to minor inhomogeneities in the source area. Theor. Appl. Climatol., 62, 924.

    • Search Google Scholar
    • Export Citation
  • Launiainen, J., 1995: Derivation of the relationship between the Obukhov stability parameter and the bulk Richardson number for flux-profile studies. Bound.-Layer Meteor., 76, 165179.

    • Search Google Scholar
    • Export Citation
  • Lee, X., and Massman W. J. , 2011: A perspective on thirty years of the Webb, Pearman and Leuning density corrections. Bound.-Layer Meteor., 139, 3759.

    • Search Google Scholar
    • Export Citation
  • Li, Y., Gao Z. , Lenschow D. H. , and Chen F. , 2010: An improved approach for parameterizing surface-layer turbulent transfer coefficients in numerical models. Bound.-Layer Meteor., 137, 153165.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and Feng J. , 2012: Seasonal and interannual variations of evapotranspiration and energy exchange over different land surfaces in a semiarid area of China. J. Appl. Meteor. Climatol., 51, 18751888.

    • Search Google Scholar
    • Export Citation
  • Liu, H., Feng J. , Jarvi L. , and Vesala T. , 2012: Four-year (2006–2009) eddy covariance measurements of CO2 flux over an urban area in Beijing. Atmos. Chem. Phys., 12, 78817892.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Louis, J. F., Tiedtke M. , and Geleyn J. F. , 1982: A short history of the operational PBL-parameterization at ECMWF. Proc. ECMWF Workshop on Planetary Boundary Layer Parameterization, Reading, United Kingdom, European Centre for Medium-Range Weather Forecasts, 59–79.

  • Martano, P., 2000: Estimation of surface roughness length and displacement height form single-level sonic anemometer data. J. Appl. Meteor., 39, 708715.

    • Search Google Scholar
    • Export Citation
  • Mascart, P., Noilhan J. , and Giordani H. , 1995: A modified parameterization of flux-profile relationship in the surface layer using different roughness length values for heat and momentum. Bound.-Layer Meteor., 72, 331344.

    • Search Google Scholar
    • Export Citation
  • Mauder, M., and Foken T. , 2006: Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteor. Z., 15, 597609.

    • Search Google Scholar
    • Export Citation
  • Mauder, M., and Coauthors, 2007: The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods. Bound.-Layer Meteor., 123, 2954.

    • Search Google Scholar
    • Export Citation
  • Mauder, M., Desjardins R. L. , Elizabeth P. , and Worth D. , 2010: An attempt to close the daytime surface energy balance using spatially-averaged flux measurements. Bound.-Layer Meteor., 136, 175191.

    • Search Google Scholar
    • Export Citation
  • Moene, A. F., and Schüttemeyer D. , 2008: The effect of surface heterogeneity on the temperature–humidity correlation and the relative transport efficiency. Bound.-Layer Meteor., 129, 99113.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and Obukhov A. M. , 1954: Basic regularity in turbulent mixing in surface layer of the atmosphere. Akad. Nauk SSSR Geofiz. Inst., 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Moore, C. J., 1986: Frequency response corrections for eddy correlation systems. Bound.-Layer Meteor., 37, 1735.

  • Nordbo, A., Järvi L. , Haapanala S. , Wood C. R. , and Vesala T. , 2012: Fraction of natural area as main predictor of net CO2 emissions from cities. Geophys. Res. Lett., 39, L20802, doi:10.1029/2012GL053087.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1987: Boundary Layer Climates. Methuen, 435 pp.

  • Schmid, H. P., 1994: Source areas for scalars and scalar fluxes. Bound.-Layer Meteor., 67, 293318.

  • Schmid, H. P., 1997: Experimental design for flux measurements: Matching observations and fluxes. Agric. For. Meteor., 87, 293318.

  • Schotanus, P., Nieuwstadt F. T. M. , and De Bruin H. A. R. , 1983: Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Bound.-Layer Meteor., 26, 8193.

    • Search Google Scholar
    • Export Citation
  • Sellers, P., Los S. O. , Tucker C. J. , Justice C. O. , Dazlich D. A. , Collatz G. J. , and Randall D. A. , 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Climate, 9, 706737.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., and Oke T. R. , 2012: Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc., 93, 18791900.

  • Su, Z., Schmugge T. , Kustas W. P. , and Massman W. J. , 2001: An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J. Appl. Meteor., 40, 19331951.

    • Search Google Scholar
    • Export Citation
  • Sun, J., 1999: Diurnal variations of thermal roughness height over a grassland. Bound.-Layer Meteor., 92, 407427.

  • Vesala, T., and Coauthors, 2008: Flux and concentration footprint modelling: State of the art. Environ. Pollut., 152, 653666.

  • Webb, E. K., Pearman G. I. , and Leuning R. , 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106, 85100.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., Oncley S. P. , and Stage S. A. , 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127150.

  • Wilson, K., Goldstein A. , Falge A. , Aubinet M. , Baldocchi D. , and Berbigier P. , 2002: Energy balance closure at FLUXNET sites. Agric. For. Meteor., 113, 223243.

    • Search Google Scholar
    • Export Citation
  • Wouters, H., De Ridder K. , and van Lipzig N. P. M. , 2012: Comprehensive parametrization of surface-layer transfer coefficients for use in atmospheric numerical models. Bound.-Layer Meteor., 145, 539550.

    • Search Google Scholar
    • Export Citation
  • Yang, K., and Coauthors, 2008: Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization. J. Appl. Meteor. Climatol., 47, 276290.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 106 0 0
Full Text Views 1083 772 45
PDF Downloads 130 36 3