• Beljaars, A. C. M., , Viterbo P. , , Miller M. J. , , and Betts A. K. , 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124, 362383.

    • Search Google Scholar
    • Export Citation
  • Bercovitch, M., , and Robertson B. C. , 1965: Meteorological factors affecting the counting rate of neutron monitors. Proc. Ninth Int. Cosmic Ray Conf., London, United Kingdom, Institute of Physics and the Physical Society, 489491.

  • Bethe, H. A., , Korff S. A. , , and Placzek G. , 1940: On the interpretation of neutron measurements in cosmic radiation. Phys. Rev., 57, 573587.

    • Search Google Scholar
    • Export Citation
  • Blöschl, G., 2001: Scaling in hydrology. Hydrol. Processes, 15, 709711, doi:10.1002/hyp.432.

  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev.,108, 1046–1053.

  • Brutsaert, W., 1982: Evaporation into the Atmosphere: Theory, History, and Applications. Kluwer, 299 pp.

  • Cavanaugh, M. L., , Kurc S. A. , , and Scott R. L. , 2011: Evapotranspiration partitioning in semiarid shrubland ecosystems: A two-site evaluation of soil moisture control on transpiration. Ecohydrology, 4, 671681, doi:10.1002/eco.157.

    • Search Google Scholar
    • Export Citation
  • Chasson, R. L., , Kisselbach V. J. , , and Sharma T. C. , 1966: Atmospheric water vapor and attenuation of the cosmic-ray nucleonic component. J. Geophys. Res., 71, 51835184.

    • Search Google Scholar
    • Export Citation
  • Choudhury, B. J., 1996: Comparison of two models relating precipitable water to surface humidity using globally distributed radiosonde data over land surfaces. Int. J. Climatol., 16, 663675.

    • Search Google Scholar
    • Export Citation
  • COESA, 1976: U.S. Standard Atmosphere, 1976. NOAA, 227 pp.

  • Cox, P. M., , Betts R. A. , , Jones C. D. , , Spall S. A. , , and Totterdell I. J. , 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184187.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Recent climatology, variability, and trends in global surface humidity. J. Climate, 19, 35893606.

  • Davis, K. J., , Bakwin P. S. , , Yi C. , , Berger B. W. , , Zhao C. , , Teclaw R. M. , , and Isebrands J. G. , 2003: The annual cycle of CO2 and H2O exchange over a northern mixed forest as observed from a very tall tower. Global Change Biol., 9, 12781293.

    • Search Google Scholar
    • Export Citation
  • Desilets, D., 2011: Radius of influence for a cosmic-ray soil moisture probe: Theory and Monte Carlo simulations. Sandia Rep. SAND2011-1101, Sandia National Laboratories, Albuquerque, NM, 22 pp. [Available online at http://prod.sandia.gov/techlib/access-control.cgi/2011/111101.pdf.]

  • Desilets, D., , Zreda M. , , and Ferre T. P. A. , 2010: Nature's neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res., 46, W11505, doi:10.1029/2009WR008726.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 1999: Assessing GCM sensitivity to soil wetness using GSWP data. J. Meteor. Soc. Japan, 77, 367385.

  • Entekhabi, D., , Rodriguez-Iturbe I. , , and Castelli F. , 1996: Mutual interaction of soil moisture state and atmospheric processes. J. Hydrol., 184, 317.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE, 98, 704716.

  • Findell, K. L., , and Eltahir E. A. , 1997: An analysis of the soil moisture–rainfall feedback, based on direct observations from Illinois. Water Resour. Res., 33, 725735.

    • Search Google Scholar
    • Export Citation
  • Franz, T. E., , Zreda M. , , Ferre T. P. A. , , Rosolem R. , , Zweck C. , , Stillman S. , , Zeng X. , , and Shuttleworth W. J. , 2012a: Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources. Water Resour. Res., 48, W08515, doi:10.1029/2012WR011871.

    • Search Google Scholar
    • Export Citation
  • Franz, T. E., , Zreda M. , , Rosolem R. , , and Ferre T. P. A. , 2012b: Field validation of cosmic-ray soil moisture probe using a distributed sensor network. Vadose Zone J.,11, vzj2012.0046, doi:10.2136/vzj2012.0046.

  • Franz, T. E., , Zreda M. , , and Rosolem R. , 2013a: A universal calibration function for determination of soil moisture with cosmic-ray neutrons, Hydrol. Earth Syst. Sci., 17, 453460, doi:10.5194/hess-17-453-2013.

    • Search Google Scholar
    • Export Citation
  • Franz, T. E., and Coauthors, 2013b: Ecosystem scale measurements of biomass water using cosmic-ray neutrons. Geophys. Res. Lett., doi:10.1002/grl.50791, in press.

    • Search Google Scholar
    • Export Citation
  • Hess, W. N., , Patterson H. W. , , and Wallace R. , 1959: Cosmic-ray neutron energy spectrum. Phys. Rev., 116, 445457.

  • Hornbuckle, B., , Irvin S. , , Franz T. , , Rosolem R. , , and Zweck C. , 2012: The potential of the COSMOS network to be a source of new soil moisture information for SMOS and SMAP. Proc. 2012 IEEE Int. Geoscience and Remote Sensing Symp., Munich, Germany, IEEE, 12431246.

  • Kerr, Y. H., , Waldteufel P. , , Wigneron J.-P. , , Martinuzzi J. , , Font J. , , and Berger M. , 2001: Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39, 17291735.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeor., 7, 590610.

    • Search Google Scholar
    • Export Citation
  • Kurc, S. A., , and Benton L. M. , 2010: Digital image-derived greenness links deep soil moisture to carbon uptake in a creosote bush-dominated shrubland. J. Arid Environ., 4, 585594.

    • Search Google Scholar
    • Export Citation
  • Lockwood, J. A., , and Yingst H. E. , 1956: Correlation of meteorological parameters with cosmic-ray neutron intensities. Phys. Rev., 104, 17181722.

    • Search Google Scholar
    • Export Citation
  • MacKay, D. S., , Ahl D. E. , , Ewers B. E. , , Gower S. T. , , Burrows S. N. , , Samanta S. , , and Davis K. J. , 2002: Effects of aggregated classifications of forest composition on estimates of evapotranspiration in a northern Wisconsin forest. Global Change Biol., 8, 12531265.

    • Search Google Scholar
    • Export Citation
  • Parameswaran, K., , and Krishna Murthy B. V. , 1990: Altitude profiles of tropospheric water vapor at low latitudes. J. Appl. Meteor., 29, 665679.

    • Search Google Scholar
    • Export Citation
  • Pelowitz, D. B., 2007: MCNPX user's manual, version 2.6.0. Los Alamos National Laboratory Rep. LA-CP-071473.

  • Reitan, C. H., 1963: Surface dew point and water vapor aloft. J. Appl. Meteor., 2, 776779.

  • Rivera Villarreyes, C. A. R., , Baroni G. , , and Oswald S. E. , 2011: Integral quantification of seasonal soil moisture changes in farmland by cosmic-ray neutrons. Hydrol. Earth Syst. Sci., 15, 38433859, doi:10.5194/hess-15-3843-2011.

    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., and Coauthors, 2008: Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J., 7, 358389, doi:10.2136/vzj2007.0143.

    • Search Google Scholar
    • Export Citation
  • Rodriguez-Iturbe, I., , and Porporato A. , 2004: Ecohydrology of Water-Controlled Ecosystems: Soil Moisture and Plant Dynamics. Cambridge University Press, 460 pp.

  • Shuttleworth, W. J., 2012: Terrestrial Hydrometeorology. John Wiley & Sons, 448 pp.

  • Shuttleworth, W. J., , Rosolem R. , , Zreda M. , , and Franz T. , 2013: The Cosmic-Ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation. Hydrol. Earth Syst. Sci. Discuss., 10, 10971125, doi:10.5194/hessd-10-1097-2013.

    • Search Google Scholar
    • Export Citation
  • Tomasi, C., 1977: Precipitable water vapor in atmospheres characterized by temperature inversions. J. Appl. Meteor., 16, 237243.

  • Tomasi, C., 1978: On the water vapour absorption in the 8–13 μm spectral region for different atmospheric conditions. Pure Appl. Geophys., 116, 10631076.

    • Search Google Scholar
    • Export Citation
  • Tomasi, C., 1984: Vertical distribution features of atmospheric water vapor in the Mediterranean, Red Sea and Indian Ocean. J. Geophys. Res., 89, 25632566.

    • Search Google Scholar
    • Export Citation
  • Tomasi, C., , and Paccagnella T. , 1988: Vertical distribution features of atmospheric water vapour in the Po Valley area. Pure Appl. Geophys.,127, 93–115.

  • Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change, 39, 667694.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and Hobbs P. V. , 1977: Atmospheric Science: An Introductory Survey. Academic Press, 467 pp.

  • Western, A. W., , and Blöschl G. , 1999: On the spatial scaling of soil moisture. J. Hydrol., 217, 203224.

  • Zeng, X. D., , Zeng X. B. , , and Barlage M. , 2008: Growing temperate shrubs over arid and semiarid regions in the Community Land Model–Dynamic Global Vegetation Model. Global Biogeochem. Cycles, 22, GB3003, doi:10.1029/2007GB003014.

    • Search Google Scholar
    • Export Citation
  • Zreda, M., , Desilets D. , , Ferré T. P. A. , , and Scott R. , 2008: Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys. Res. Lett., 35, L21402, doi:10.1029/2008GL035655.

    • Search Google Scholar
    • Export Citation
  • Zreda, M., , Shuttleworth W. J. , , Zeng X. , , Zweck C. , , Desilets D. , , Franz T. , , Rosolem R. , , and Ferre T. P. A. , 2012: COSMOS: The Cosmic-Ray Soil Moisture Observing System. Hydrol. Earth Syst. Sci. Discuss., 9, 45054551, doi:10.5194/hessd-9-4505-2012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 313 314 26
Full Text Views 23 23 0
PDF Downloads 29 29 0

The Effect of Atmospheric Water Vapor on Neutron Count in the Cosmic-Ray Soil Moisture Observing System

View More View Less
  • 1 Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona
  • | 2 Department of Hydrology and Water Resources, and Department of Atmospheric Sciences, University of Arizona, Tucson, Arizona
  • | 3 Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona
  • | 4 Department of Atmospheric Sciences, University of Arizona, Tucson, Arizona
  • | 5 School of Natural Resources and Environment, University of Arizona, Tucson, Arizona
© Get Permissions
Restricted access

Abstract

The cosmic-ray method for measuring soil moisture, used in the Cosmic-Ray Soil Moisture Observing System (COSMOS), relies on the exceptional ability of hydrogen to moderate fast neutrons. Sources of hydrogen near the ground, other than soil moisture, affect the neutron measurement and therefore must be quantified. This study investigates the effect of atmospheric water vapor on the cosmic-ray probe signal and evaluates the fast neutron response in realistic atmospheric conditions using the neutron transport code Monte Carlo N-Particle eXtended (MCNPX). The vertical height of influence of the sensor in the atmosphere varies between 412 and 265 m in dry and wet atmospheres, respectively. Model results show that atmospheric water vapor near the surface affects the neutron intensity signal by up to 12%, corresponding to soil moisture differences on the order of 0.10 m3 m−3. A simple correction is defined to identify the true signal associated with integrated soil moisture that rescales the measured neutron intensity to that which would have been observed in the atmospheric conditions prevailing on the day of sensor calibration. Use of this approach is investigated with in situ observations at two sites characterized by strong seasonality in water vapor where standard meteorological measurements are readily available.

Current affiliation: Department of Civil Engineering, Queen's School of Engineering, University of Bristol, Bristol, United Kingdom.

Corresponding author address: Rafael Rosolem, Department of Civil Engineering, Queen's School of Engineering, University of Bristol, 2.20 Queen's Building, University Walk, Bristol BS8 1TR, United Kingdom. E-mail: rafael.rosolem@bristol.ac.uk

Abstract

The cosmic-ray method for measuring soil moisture, used in the Cosmic-Ray Soil Moisture Observing System (COSMOS), relies on the exceptional ability of hydrogen to moderate fast neutrons. Sources of hydrogen near the ground, other than soil moisture, affect the neutron measurement and therefore must be quantified. This study investigates the effect of atmospheric water vapor on the cosmic-ray probe signal and evaluates the fast neutron response in realistic atmospheric conditions using the neutron transport code Monte Carlo N-Particle eXtended (MCNPX). The vertical height of influence of the sensor in the atmosphere varies between 412 and 265 m in dry and wet atmospheres, respectively. Model results show that atmospheric water vapor near the surface affects the neutron intensity signal by up to 12%, corresponding to soil moisture differences on the order of 0.10 m3 m−3. A simple correction is defined to identify the true signal associated with integrated soil moisture that rescales the measured neutron intensity to that which would have been observed in the atmospheric conditions prevailing on the day of sensor calibration. Use of this approach is investigated with in situ observations at two sites characterized by strong seasonality in water vapor where standard meteorological measurements are readily available.

Current affiliation: Department of Civil Engineering, Queen's School of Engineering, University of Bristol, Bristol, United Kingdom.

Corresponding author address: Rafael Rosolem, Department of Civil Engineering, Queen's School of Engineering, University of Bristol, 2.20 Queen's Building, University Walk, Bristol BS8 1TR, United Kingdom. E-mail: rafael.rosolem@bristol.ac.uk
Save