• Adler, R. F., , Huffman G. J. , , Bolvin D. T. , , Curtis S. , , and Nelkin E. J. , 2000: Tropical rainfall distributions determined using TRMM combined with other satellite and gauge information. J. Appl. Meteor., 39, 20072023.

    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., , Nasrollahi N. , , and Habib E. , 2009: Accounting for uncertainties of the TRMM satellite estimates. Remote Sens., 1, 606619.

    • Search Google Scholar
    • Export Citation
  • AghaKouchak, A., , Habibb E. , , and Bárdossy A. , 2010: A comparison of three remotely sensed rainfall ensemble generators. Atmos. Res., 98, 387–399.

    • Search Google Scholar
    • Export Citation
  • Amitai, E., , Petersen W. , , Llort X. , , and Vasiloff S. , 2012: Multiplatform comparisons of rain intensity for extreme precipitation events. IEEE Trans. Geosci. Remote Sens., 50, 675686.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., , Maggioni V. , , Nikolopoulos E. , , Taye T. , , and Hossain F. , 2010: Benchmarking high-resolution global satellite rain products to radar and rain gauge rainfall estimates. IEEE Trans. Geosci. Remote Sens., 48, 16671683.

    • Search Google Scholar
    • Export Citation
  • Astin, I., 1997: A survey of studies into errors in large scale space-time averages of rainfall, cloud cover, sea surface processes and the earth's radiation budget as derived from low Earth orbit satellite instruments because of their incomplete temporal and spatial coverage. Surv. Geophys., 18, 385403.

    • Search Google Scholar
    • Export Citation
  • Bardossy, A., 1998: Generating precipitation time series using simulated annealing. Water Resour. Res., 34, 17371744.

  • Behrangi, A., , Imam B. , , Hsu K. , , Sorooshian S. , , Bellerby T. J. , , and Huffman G. J. , 2010: REFAME: Rain Estimation Using Forward-Adjusted Advection of Microwave Estimates. J. Hydrometeor., 11, 13051321.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., , and Kundu P. K. , 1996: A study of the sampling error in satellite rainfall estimates using optimal averaging of data and a stochastic model. J. Climate, 9, 12511268.

    • Search Google Scholar
    • Export Citation
  • Bellerby, T., 2006: High-resolution 2-D cloud-top advection from geostationary satellite imagery. IEEE Trans. Geosci. Remote Sens., 44, 36393648.

    • Search Google Scholar
    • Export Citation
  • Bellerby, T., 2007: Satellite rainfall satellite rainfall uncertainty estimation using an artificial neural network. J. Hydrometeor., 8, 13971412.

    • Search Google Scholar
    • Export Citation
  • Bellerby, T., 2012: Searchlight: Precipitation advection tracking using multiplatform low-Earth orbiting satellite data. IEEE Trans. Geosci. Remote Sens., 51, 2177–2187, doi:10.1109/TGRS.2012.2211604.

    • Search Google Scholar
    • Export Citation
  • Bellerby, T., , and Sun J. , 2005: Probabilistic and ensemble representations of the uncertainty in an IR/microwave satellite precipitation product. J. Hydrometeor., 6, 10321044.

    • Search Google Scholar
    • Export Citation
  • Bellerby, T., , Hsu K. , , and Sorooshian S. , 2009: LMODEL: A satellite precipitation methodology using cloud development modeling. Part I: Algorithm construction and calibration. J. Hydrometeor., 10, 10811095.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., , Pierce C. E. , , and Seed A. W. , 2006: STEPS: A probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP. Quart. J. Roy. Meteor. Soc., 132, 21272155.

    • Search Google Scholar
    • Export Citation
  • Chang, A. T. C., , and Chiu L. S. , 2001: Non-systematic errors of monthly oceanic rainfall derived from passive microwave radiometry. Geophys. Res. Lett., 28, 12231226.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , and Schlax M. G. , 1991: Estimation of time averages from irregularly spaced observations: With application to coastal zone color scanner estimates of chlorophyll concentration. J. Geophys. Res., 96, 14 66914 692.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., , and Slater A. G. , 2006: Probabilistic quantitative precipitation estimation in complex terrain. J. Hydrometeor., 7, 322.

    • Search Google Scholar
    • Export Citation
  • Dafflon, B., , Irving J. , , and Holliger K. , 2009: Simulated-annealing-based conditional simulation for the local-scale characterization of heterogeneous aquifers. J. Appl. Geophys., 68, 6070.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., , Chidzambwa S. , , Ceccato P. , , Connor S. J. , , and Ropelewski C. F. , 2008: Validation of high-resolution satellite rainfall products over complex terrain. Int. J. Remote Sens., 29, 40974110.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , Janowiak J. , , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., 1997: Special Sensor Microwave Imager derived global rainfall estimates for climatological applications. J. Geophys. Res., 102, 16 71516 736.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., , Weng F. , , Grody N. C. , , and Zhao L. , 2000: Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophys. Res. Lett., 27, 26692672.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., , and Krajewski W. F. , 2005: Modeling distribution of temporal sampling errors in area-time-averaged rainfall estimate. Atmos. Res., 73, 243–259.

    • Search Google Scholar
    • Export Citation
  • Gebremichael, M., , Liao G.-Y. , , and Yan J. , 2011: Nonparametric error model for a high resolution satellite rainfall product. Water Resour. Res., 47, W07504, doi:10.1029/2010WR009667.

    • Search Google Scholar
    • Export Citation
  • Germann, U., , and Zawadzki I. , 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130, 28592873.

    • Search Google Scholar
    • Export Citation
  • Germann, U., , and Zawadzki I. , 2004: Scale dependence of the predictability of precipitation from continental radar images. Part II: Probability forecasts. J. Appl. Meteor., 43, 7489.

    • Search Google Scholar
    • Export Citation
  • Goovaerts, P., 1997: Geostatistics for Natural Resources Evaluation. Oxford University Press, 483 pp.

  • Haberlandt, U., , and Gattke C. , 2004: Spatial interpolation v. simulation of precipitation for rainfall-runoff modelling—A case study in the Lippe river basin. Hydrology: Science and practice for the 21st century, B. Webb et al., Eds., British Hydrological Society, 120127.

  • Hong, Y., , Hsu K. , , Moradkhani H. , , and Sorooshian S. , 2006: Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour. Res., 42, W08421, doi:10.1029/2005WR004398.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., , and Anagnostou E. N. , 2006: A two-dimensional satellite rainfall error model. IEEE Trans. Geosci. Remote Sens., 44, 15111521.

    • Search Google Scholar
    • Export Citation
  • Hossain, F., , Anagnostou E. N. , , and Dinku T. , 2004: Sensitivity analyses of satellite rainfall retrieval and sampling error on flood prediction uncertainty. IEEE Trans. Geosci. Remote Sens., 42, 130139.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., , Skofronick-Jackson G. , , Kummerow C. D. , , and Shepherd J. M. , 2008: Global precipitation measurement. Precipitation: Advances in Measurement, Estimation, and Prediction, S. Michaelides, Ed., Springer, 131–170.

  • Hsu, K., , Bellerby T. , , and Sorooshian S. , 2009: LMODEL: A satellite precipitation methodology using cloud development modeling. Part II: Validation. J. Hydrometeor., 10, 10961108.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., , Joyce R. J. , , and Yarosh Y. , 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205217.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., , and Xie P. , 2011: Kalman filter–based CMORPH. J. Hydrometeor., 12, 15471563.

  • Joyce, R. J., , Janowiak J. E. , , Arkin P. A. , , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., , Xie P. , , Yarosh Y. , , Janowiak J. E. , , and Arkin P. A. , 2010: CMORPH: A “morphing”approach for high resolution precipitation product generation. Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., 23–37.

  • Kidd, C., , Kniveton D. R. , , Todd M. C. , , and Bellerby T. J. , 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4, 10881104.

    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2007: Global precipitation map using satelliteborne microwave radiometers by the GSMaP Project: Production and validation. IEEE Trans. Geosci. Remote Sens., 45, 22592275.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2001: Evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., , Fritz A. , , Smith T. , , Hondl K. , , and Stumpf G. J. , 2007: An automated technique to quality control radar reflectivity data. J. Appl. Meteor., 46, 288305.

    • Search Google Scholar
    • Export Citation
  • Marzano, F. S., , Palmacci M. , , Cimini D. , , Giuliani G. , , and Turk F. J. , 2004: Multivariate statistical integration of satellite infrared and microwave radiometric measurements for rainfall retrieval at the geostationary scale. IEEE Trans. Geosci. Remote Sens., 42, 10181032.

    • Search Google Scholar
    • Export Citation
  • McMillan, H., , Jackson B. , , Clark M. , , Kavetski D. , , and Woods R. , 2011: Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models. J. Hydrol., 400, 83–94.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and Coauthors, 2003a: Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part I: Validation of GPCC rainfall product and pre-TRMM satellite and blended products. J. Appl. Meteor., 42, 13371354.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and Coauthors, 2003b: Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: Validation of TRMM rainfall products. J. Appl. Meteor., 42, 13551368.

    • Search Google Scholar
    • Export Citation
  • Nijssen, B., , and Lettenmaier D. P. , 2004: Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites. J. Geophys. Res., 109, D02103, doi:10.1029/2003JD003497.

    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, E. I., , Anagnostou E. N. , , Hossain F. , , Gebremichael M. , , and Borga M. , 2010: Understanding the scale relationships of uncertainty propagation of satellite rainfall through a distributed hydrologic model. J. Hydrometeor., 11, 520532.

    • Search Google Scholar
    • Export Citation
  • Roca, R., , Chambon P. , , Jobard I. , , Kirstetter P.-E. , , Gosset M. , , and Bergès J. C. , 2010: Comparing satellite and surface rainfall products over West Africa at meteorologically relevant scales during the AMMA campaign using error estimates. J. Appl. Meteor. Climatol., 49, 715731.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1982a: Sampling theory for asynoptic satellite observations. Part I: Space–time spectra, resolution, and aliasing. J. Atmos. Sci., 39, 25772600.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1982b: Sampling theory for asynoptic satellite observations. Part II: Fast Fourier synoptic mapping. J. Atmos. Sci., 39, 26012614.

    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., , and Arkin P. A. , 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149166.

    • Search Google Scholar
    • Export Citation
  • Sherlaw-Johnson, C., , Gallivan S. , , and Burridge J. , 1995: Estimating a Markov transition matrix from observational data. J. Oper. Res. Soc., 46, 405410.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., , Hsu K. , , Gao X. , , Gupta H. V. , , Imam B. , , and Braithwaite D. , 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., , Bell T. L. , , Zhang Y. , , and Wood E. F. , 2003: Comparison of two methods for estimating the sampling-related uncertainty of satellite rainfall averages based on a large radar dataset. J. Climate, 16, 37593778.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., , Kidd C. , , Levizzani V. , , and Marzano F. S. , 2004: A neural networks-based fusion technique to estimate half-hourly estimates at 0.1° resolution from satellite passive microwave and infrared data. J. Appl. Meteor., 43, 576594.

    • Search Google Scholar
    • Export Citation
  • Teo, C.-K., 2006: Application of satellite-based rainfall estimates to crop yield forecasting in Africa. Ph.D. thesis, University of Reading, 242 pp. [Available online at: http://www.met.rdg.ac.uk/phdtheses/Application%20of%20satellite-based%20rainfall%20estimates%20to%20crop%20yield%20forecasting%20in%20Africa.pdf.]

  • Teo, C.-K., , and Grimes D. I. F. , 2007: Stochastic modelling of rainfall from satellite data. J. Hydrol., 346, 33–50.

  • Tian, Y., , Peters-Lidard C. D. , , Choudhury B. J. , , and Garcia M. , 2007: Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. J. Hydrometeor., 8, 11651183.

    • Search Google Scholar
    • Export Citation
  • Todd, M., , Kidd C. , , Kniveton D. R. , , and Bellerby T. J. , 2001: A combined satellite infrared and passive microwave technique for the estimation of small scale rainfall. J. Atmos. Oceanic Technol., 18, 742755.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., , Talagrand O. , , Candille G. , , and Zhu Y. , 2003: Probability and ensemble forecasts. Forecast Verification, I. T. Jolliffe and D. B. Stephenson, Eds., Wiley, 137–164.

  • Turk, F. J., , and Miller S. D. , 2005: Toward improving estimates of remotely-sensed precipitation with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens., 43, 10591069.

    • Search Google Scholar
    • Export Citation
  • Ushio, T., and Coauthors, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87A, 137151.

    • Search Google Scholar
    • Export Citation
  • Vasiloff, S. V., and Coauthors, 2007: Improving QPE and very short term QPF: An initiative for a community-wide integrated approach. Bull. Amer. Meteor. Soc., 88, 18991911.

    • Search Google Scholar
    • Export Citation
  • Weng, F. W., , Zhao L. , , Ferraro R. , , Pre G. , , Li X. , , and Grody N. C. , 2003: Advanced microwave sounding unit (AMSU) cloud and precipitation algorithm. Radio Sci., 38, 80688079.

    • Search Google Scholar
    • Export Citation
  • Xu, L., , Gao X. , , Sorooshian S. , , and Arkin P. A. , 1999: A microwave infrared threshold technique to improve the GOES precipitation index. J. Appl. Meteor., 38, 569579.

    • Search Google Scholar
    • Export Citation
  • Zeng, L., , and Levy G. , 1995: Space and time aliasing structure in monthly mean polar-orbiting satellite data. J. Geophys. Res., 100, 51335142.

    • Search Google Scholar
    • Export Citation
  • Zeweldi, D. A., , and Gebremichael M. , 2009: Evaluation of CMORPH precipitation products at fine space–time scales. J. Hydrometeor., 10, 300307.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 56 56 8
Full Text Views 1 1 0
PDF Downloads 1 1 0

Ensemble Representation of Uncertainty in Lagrangian Satellite Rainfall Estimates

View More View Less
  • 1 Department of Geography, University of Hull, Hull, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A new algorithm called Lagrangian Simulation (LSIM) has been developed that enables the interpolation uncertainty present in Lagrangian satellite rainfall algorithms such as the Climate Prediction Center (CPC) morphing technique (CMORPH) to be characterized using an ensemble product. The new algorithm generates ensemble sequences of rainfall fields conditioned on multiplatform multisensor microwave satellite data, demonstrating a conditional simulation approach that overcomes the problem of discontinuous uncertainty fields inherent in this type of product. Each ensemble member is consistent with the information present in the satellite data, while variation between members is indicative of uncertainty in the rainfall retrievals. LSIM is based on the combination of a Markov weather generator, conditioned on both previous and subsequent microwave measurements, and a global optimization procedure that uses simulated annealing to constrain the generated rainfall fields to display appropriate spatial structures. The new algorithm has been validated over a region of the continental United States and has been shown to provide reliable estimates of both point uncertainty distributions and wider spatiotemporal structures.

Corresponding author address: T. J. Bellerby, Department of Geography, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom. E-mail: t.j.bellerby@hull.ac.uk

Abstract

A new algorithm called Lagrangian Simulation (LSIM) has been developed that enables the interpolation uncertainty present in Lagrangian satellite rainfall algorithms such as the Climate Prediction Center (CPC) morphing technique (CMORPH) to be characterized using an ensemble product. The new algorithm generates ensemble sequences of rainfall fields conditioned on multiplatform multisensor microwave satellite data, demonstrating a conditional simulation approach that overcomes the problem of discontinuous uncertainty fields inherent in this type of product. Each ensemble member is consistent with the information present in the satellite data, while variation between members is indicative of uncertainty in the rainfall retrievals. LSIM is based on the combination of a Markov weather generator, conditioned on both previous and subsequent microwave measurements, and a global optimization procedure that uses simulated annealing to constrain the generated rainfall fields to display appropriate spatial structures. The new algorithm has been validated over a region of the continental United States and has been shown to provide reliable estimates of both point uncertainty distributions and wider spatiotemporal structures.

Corresponding author address: T. J. Bellerby, Department of Geography, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom. E-mail: t.j.bellerby@hull.ac.uk
Save