Impact of Land Model Calibration on Coupled Land–Atmosphere Prediction

Joseph A. Santanello Jr. Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Joseph A. Santanello Jr. in
Current site
Google Scholar
PubMed
Close
,
Sujay V. Kumar Science Applications International Corporation, McLean, Virginia, and Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Sujay V. Kumar in
Current site
Google Scholar
PubMed
Close
,
Christa D. Peters-Lidard Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Christa D. Peters-Lidard in
Current site
Google Scholar
PubMed
Close
,
Ken Harrison University of Maryland, College Park, College Park, and Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Ken Harrison in
Current site
Google Scholar
PubMed
Close
, and
Shujia Zhou Northrop Grumman Information Systems, Chantilly, Virginia, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Shujia Zhou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Land–atmosphere (LA) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. In this study, the authors examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled Weather Research and Forecasting Model (WRF) forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through calibration of the Noah land surface model using the new optimization and uncertainty estimation subsystems in NASA's Land Information System (LIS-OPT/LIS-UE). The impact of the calibration on the 1) spinup of the land surface used as initial conditions and 2) the simulated heat and moisture states and fluxes of the coupled WRF simulations is then assessed. In addition, the sensitivity of this approach to the period of calibration (dry, wet, or average) is investigated. Results show that the offline calibration is successful in providing improved initial conditions and land surface physics for the coupled simulations and in turn leads to systematic improvements in land–PBL fluxes and near-surface temperature and humidity forecasts. Impacts are larger during dry regimes, but calibration during either primarily wet or dry periods leads to improvements in coupled simulations due to the reduction in land surface model bias. Overall, these results provide guidance on the questions of what, how, and when to calibrate land surface models for coupled model prediction.

Corresponding author address: Joseph A. Santanello Jr., Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Code 617 Bldg. 33, Rm. G220, Greenbelt, MD 20771. E-mail: joseph.a.santanello@nasa.gov

Abstract

Land–atmosphere (LA) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. In this study, the authors examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled Weather Research and Forecasting Model (WRF) forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through calibration of the Noah land surface model using the new optimization and uncertainty estimation subsystems in NASA's Land Information System (LIS-OPT/LIS-UE). The impact of the calibration on the 1) spinup of the land surface used as initial conditions and 2) the simulated heat and moisture states and fluxes of the coupled WRF simulations is then assessed. In addition, the sensitivity of this approach to the period of calibration (dry, wet, or average) is investigated. Results show that the offline calibration is successful in providing improved initial conditions and land surface physics for the coupled simulations and in turn leads to systematic improvements in land–PBL fluxes and near-surface temperature and humidity forecasts. Impacts are larger during dry regimes, but calibration during either primarily wet or dry periods leads to improvements in coupled simulations due to the reduction in land surface model bias. Overall, these results provide guidance on the questions of what, how, and when to calibrate land surface models for coupled model prediction.

Corresponding author address: Joseph A. Santanello Jr., Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Code 617 Bldg. 33, Rm. G220, Greenbelt, MD 20771. E-mail: joseph.a.santanello@nasa.gov
Save
  • Betts, A. K., 1992: FIFE atmospheric boundary layer budget methods. J. Geophys. Res., 97, 18 52318 532.

  • Betts, A. K., 2009: Land-surface-atmosphere coupling in observations and models. J. Adv. Model. Earth Syst.,1,doi:10.3894/JAMES.2009.1.4.

  • Case, J. L., Crosson W. L. , Kumar S. V. , Lapenta W. M. , and Peters-Lidard C. D. , 2008: Impacts of high-resolution land surface initialization on regional sensible weather forecasts from the WRF model. J. Hydrometeor., 9, 12491266.

    • Search Google Scholar
    • Export Citation
  • Case, J. L., Kumar S. V. , Srikishen J. , and Jedlovec G. J. , 2011: Improving numerical weather predictions of summertime precipitation over the southeastern United States through a high-resolution initialization of the surface state. Wea. Forecasting, 26, 785807.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Mitchell K. , 1999: Using GEWEX/ISLSCP forcing data to simulate global soil moisture fields and hydrological cycle for 1987–1988. J. Meteor. Soc. Japan, 77, 167182.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Zhang Y. , 2009: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophys. Res. Lett., 36, L10404, doi:10.1029/2009GL037980.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2007: Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J. Appl. Meteor., 46, 694713.

    • Search Google Scholar
    • Export Citation
  • Chin, M., Rood R. B. , Lin S.-J. , Muller J. F. , and Thomspon A. M. , 2000: Atmospheric sulfur cycle in the global model GOCART: Model description and global properties. J. Geophys. Res., 105, 24 67124 687.

    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res., 108, 8845, doi:10.1029/2002JD003316.

    • Search Google Scholar
    • Export Citation
  • de Goncalves, L. G. G., Shuttleworth W. J. , Burke E. J. , Houser P. , Toll D. L. , Rodell M. , and Arsenault K. , 2006: Toward a South America land data assimilation system: Aspects of land surface model spin-up using the Simplified Simple Biosphere. J. Geophys. Res., 111, D17110, doi:10.1029/2005JD006297.

    • Search Google Scholar
    • Export Citation
  • Di Giuseppe, F., Cesari D. , and Bonafé G. , 2011: Soil initialization strategy for use in limited-area weather prediction systems. Mon. Wea. Rev., 139, 18441860.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P., Koster R. , and Guo Z. , 2006: Do global models properly represent the feedback between land and atmosphere? J. Hydrometeor., 7, 1177–1198.

    • Search Google Scholar
    • Export Citation
  • Dong, X., and Coauthors, 2011: Investigation of the 2006 drought and 2007 flood extremes at the Southern Great Plains through an integrative analysis of observations. J. Geophys. Res., 116, D03204, doi:10.1029/2010JD014776.

    • Search Google Scholar
    • Export Citation
  • Duan, Q., Gupta V. , and Sorooshian S. , 1993: A shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl., 76, 501521.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Feddes, R. A., Menenti M. , Kabat P. , and Bastiaanssen W. G. M. , 1993: Is large-scale inverse modeling of unsaturated flow with areal average evaporation and surface soil moisture as estimated from remote-sensing feasible. J. Hydrol., 143, 125152.

    • Search Google Scholar
    • Export Citation
  • Gilks, W. R., Richardson S. , and Spiegelhalter D. J. , 1996: Introducing Markov chain Monte Carlo. Markov Chain Monte Carlo in Practice, W.R. Gilks, S. Richardson, and D. J. Spiegelhalter, Eds., Chapman and Hall, 486 pp.

  • Gupta, H. V., Bastidas L. A. , Sorooshian S. , Shuttleworth W. J. , and Yang Z. L. , 1999: Parameter estimation of a land-surface scheme using multicriteria methods. J. Geophys. Res., 104 (D16), 19 49119 503.

    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., and Small E. E. , 2005: The effect of soil hydraulic properties vs. soil texture in land surface models. Geophys. Res. Lett., 32, L02402, doi:10.1029/2004GL021843.

    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., Defries R. S. , Townshend J. R. G. , and Sohlberg R. , 2000: Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens., 21, 13311364.

    • Search Google Scholar
    • Export Citation
  • Harrison, K. W., Kumar S. V. , Peters-Lidard C. D. , and Santanello J. A. , 2012: Quantifying the change in soil moisture modeling uncertainty from remote sensing observations using Bayesian inference tecniques. Water Resour. Res., 48, W11514, doi:10.1029/2012WR012337.

    • Search Google Scholar
    • Export Citation
  • Hess, R., 2001: Assimilation of screen level observations by variational soil moisture analysis. Meteor. Atmos. Phys., 77, 145154.

  • Hogue, T. S., Bastidas L. , Gupta H. , Sorooshian S. , Mitchell K. , and Emmerich W. , 2005: Evaluation and transferability of the Noah land surface model in semiarid environments. J. Hydrometeor., 6, 6884.

    • Search Google Scholar
    • Export Citation
  • Holland, J., 1975: Adaptation in Natural and Artificial Systems. University of Michigan Press, 183 pp.

  • Holt, T., Niyogi D. , Chen F. , Manning K. W. , and LeMone M. A. , 2006: Effect of land–atmosphere interactions on the IHOP 24–25 May 2002 convection case. Mon. Wea. Rev., 134, 113133.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Kato, H., Rodell M. , Beyrich F. , Cleugh H. , van Gorsel E. , Liu H. , and Meyers T. P. , 2007: Sensitivity of land surface simulations to model physics, parameters, and forcings, at four CEOP sites. J. Meteor. Soc. Japan, 85A, 187204.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 306, 11381140.

  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., Peters-Lidard C. D. , Eastman J. L. , and Tao W.-K. , 2008: An integrated high resolution hydrometeorological modeling testbed using LIS and WRF. Environ. Modell. Software, 23, 169181.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., Reichle R. H. , Harrison K. W. , Peters-Lidard C. D. , Yatheendradas S. , and Santanello J. A. , 2012a: A comparison of methods for a priori bias correction in soil moisture data assimilation. Water Resour. Res., 48, W03515, doi:10.1029/2010WR010261.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., Peters-Lidard C. D. , Santanello J. A. , Harrison K. , Liu Y. , and Shaw M. , 2012b: Land Surface Verification Toolkit (LVT)—A generalized framework for land surface model evaluation. Geosci. Model Dev., 5, 869–886, doi:10.5194/gmd-5-869-2012.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., Tewari M. , Chen F. , Alfieri J. G. , and Niyogi D. , 2008: Evaluation of the Noah land surface model using data from a fair-weather IHOP_2002 day with heterogeneous surface fluxes. Mon. Wea. Rev., 136, 49154941.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., Chen F. , Tewari M. , Dudhia J. , Geerts B. , Miao Q. , Coulter R. L. , and Grossman R. L. , 2010: Simulating the IHOP_2002 fair-weather CBL with the WRF-ARW–Noah modeling system. Part I: Surface fluxes and CBL structure and evolution along the eastern track. Mon. Wea. Rev., 138, 722744.

    • Search Google Scholar
    • Export Citation
  • Levenberg, K., 1944: A method for the solution of certain non-linear problems in least squares. Quart. J. Appl. Math., 2, 164168.

  • Liu, Y., Bastidas L. A. , Gupta H. V. , and Sorooshian S. , 2003: Impacts of a parameterization deficiency on offline and coupled land surface model simulations. J. Hydrometeor., 4, 901914.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Gupta H. V. , Sorooshian S. , Bastidas L. A. , and Shuttleworth W. J. , 2004: Exploring parameter sensitivities of the land surface using a locally coupled land-atmosphere model. J. Geophys. Res., 109, D21101, doi:10.1029/2004JD004730.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Gupta H. V. , Sorooshian S. , Bastidas L. A. , and Shuttleworth W. J. , 2005: Constraining land surface and atmospheric parameters of a locally coupled model using observational data. J. Hydrometeor., 6, 156172.

    • Search Google Scholar
    • Export Citation
  • Marquardt, D., 1963: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math., 11, 431441.

  • Matsui, T., and Coauthors, 2009: Goddard Satellite Data Simulation Unit: Multi-Sensor Satellite Simulators to Support Aerosol-Cloud-Precipitation Satellite Missions, Eos, Trans. Amer. Geophys. Union,90 (Fall Meeting Suppl.), Abstract A21D-0268.

  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360.

  • Miller, D., and White R. , 1998: A conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact., 2, doi:10.1175/1087-3562(1998)002<0001:ACUSMS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models. Part I—A discussion of principles. J. Hydrol., 10, 282290.

    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., and Coauthors, 2007: High-performance Earth system modeling with NASA/GSFC's Land Information System. Innovations Syst. Software Eng., 3, 157165.

    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C. D., Mocko D. M. , Santanello J. A. , Tischler M. , Moran M. S. , Garcia M. , and Wu Y. , 2008: Role of precipitation uncertainty in the estimation of hydrologic soil properties using remotely sensed soil moisture in a semiarid environment. Water Resour. Res., 44, W05S18, doi:10.1029/2007WR005884.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., Kumar S. V. , Mahanama S. P. P. , Koster R. D. , and Liu Q. , 2010: Assimilation of satellite-derived skin temperature observations into land surface models. J. Hydrometeor., 11, 11031122, doi:10.1175/2010JHM1262.1.

    • Search Google Scholar
    • Export Citation
  • Robock, A., and Coauthors, 2003: Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season. J. Geophys. Res., 108, 8846, doi:10.1029/2002JD003245.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394.

  • Rodell, M., Houser P. R. , Berg A. A. , and Famiglietti J. S. , 2005: Evaluation of 10 methods for initializing a land surface model. J. Hydrometeor., 6, 146155.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Peters-Lidard C. D. , Garcia M. , Mocko D. , Tischler M. , Moran M. S. , and Thoma D. P. , 2007: Using remotely-sensed estimates of soil moisture to infer spatially distributed soil hydraulic properties. Remote Sens. Environ., 110, 7997.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Peters-Lidard C. D. , Kumar S. V. , Alonge C. , and Tao W.-K. , 2009: A modeling and observational framework for diagnosing local land–atmosphere coupling on diurnal time scales. J. Hydrometeor., 10, 577599.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Peters-Lidard C. D. , and Kumar S. V. , 2011a: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., and Coauthors, 2011b: Results from Local Land-Atmosphere Coupling (LoCo) Project. GEWEX News, Vol. 21, No. 4, International GEWEX Project Office, Silver Spring, MD, 79.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Peters-Lidard C. , Kennedy A. , and Kumar S. , 2013: Diagnosing the nature of land–atmosphere coupling: A case study of dry/wet extremes in the U.S. southern Great Plains. J. Hydrometeor.,14, 3–24.

  • Seneviratne, S. I., Corti T. , Davin E. L. , Hirschi M. , Jaeger E. B. , Lehner I. , Orlowsky B. , and Teuling A. J. , 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , Wang W. , and Powers J. G. , 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp. [Available online at www.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf.]

  • Soet, M., and Stricker J. N. M. , 2003: Functional behaviour of pedotransfer functions in soil water flow simulation. Hydrol. Processes, 17, 16591670.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., Chen F. , Manning K. W. , LeMone M. A. , and Davis C. A. , 2008: Sensitivity of the PBL and precipitation in 12-day simulations of warm-season convection using different land surface models and soil wetness conditions. Mon. Wea. Rev., 136, 23212343.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., LeMone M. A. , Chen F. , and Manning K. W. , 2011: Effects of surface heat and moisture exchange on ARW-WRF warm-season precipitation forecasts over the central United States. Wea. Forecasting, 26, 325.

    • Search Google Scholar
    • Export Citation
  • U.S. Department of Agriculture, cited 1994. State Soil Geographic (STATSGO) database for Arizona. [Available online at http://www.soilinfo.psu.edu/index.cgi?soil_data&statsgo.]

  • van den Hurk, B. J. J. M., and Blyth E. M. , 2008: WATCH/LoCo workshop report. GEWEX News, Vol. 18, No. 4, International GEWEX Project Office, Silver Spring, MD, 12–14.

  • van den Hurk, B. J. J. M., Best M. , Dirmeyer P. , Pitman A. , Polcher J. , and Santanello J. , 2011: Acceleration of land surface model development over a decade of GLASS. Bull. Amer. Meteor. Soc., 92, 15931600.

    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., Vilà-Guerau de Arellano J. , Moene A. F. , and Holtslag A. A. M. , 2009: Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development. Quart. J. Roy. Meteor. Soc., 135, 12771291, doi:10.1002/qj.431.

    • Search Google Scholar
    • Export Citation
  • Wen, X., Lu S. , and Jin J. , 2012: Integrating remote sensing data with WRF for improved simulations of oasis effects on local weather processes over an arid region in northwestern China. J. Hydrometeor., 13, 573587.

    • Search Google Scholar
    • Export Citation
  • Wilson, K., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agric. For. Meteor., 113, 223243.

  • Xia, Y., Ek M. , Wei H. , and Meng J. , 2012: Comparative analysis of relationships between NLDAS-2 forcings and model outputs. Hydrol. Processes, 26, 467474.

    • Search Google Scholar
    • Export Citation
  • Yang, Z., Dickinson R. E. , Henderson-Sellers A. , and Pitman A. J. , 1995: Preliminary study of spin-up processes in land surface models with the first stage data of Project for Intercomparison of Land Surface Parameterization Schemes Phase 1(a). J. Geophys. Res.,100 (D8), 16 553–16 578.

All Time Past Year Past 30 Days
Abstract Views 184 0 0
Full Text Views 1039 785 72
PDF Downloads 332 80 6