Warm Winter Storms in Central Chile

R. Garreaud Department of Geophysics, and Center for Climate and Resilience Research, University of Chile, Santiago, Chile

Search for other papers by R. Garreaud in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Central Chile is a densely populated region along the west coast of subtropical South America (30°–36°S), limited to the east by the Andes. Precipitation is concentrated in austral winter, mostly associated with the passage of cold fronts. The freezing level over central Chile is typically between 1500 and 2500 m when precipitation is present. In about a third of the cases, however, precipitation occurs accompanied by warm temperatures and freezing levels above 3000 m, leading to a sizeable increment in the pluvial area of Andean basins and setting the stage for hydrometeorological hazards. Here, warm winter storms in central Chile are studied, including a statistical description of their occurrence and an estimate of their hydrological impacts. Remote-sensed data and high-resolution reanalysis are used to explore the synoptic-scale environment of a typical case, generalized later by a compositing analysis. The structure of warm storms is also contrasted with that of the more recurrent cold cases. Precipitation during warm events occurs in the warm sector of a slow-moving cold front because of the intense moisture flux against the mountains in connection with a land-falling atmospheric river. This is in turn driven by a strong zonal jet aloft and reduced mechanical blocking upstream of the Andes. On a broader scale, a key element is the presence of a slowly moving anticyclone over the south Pacific, fostering advection of cold air into midlatitudes. The intense and persistent zonal jet stretches a moist-air corridor from the central Pacific to the west coast of South America.

Corresponding author address: Dr. René Garreaud, Department of Geophysics, Universidad de Chile, Blanco Encalada 2002, Santiago, Chile. E-mail: rgarreau@dgf.uchile.cl

Abstract

Central Chile is a densely populated region along the west coast of subtropical South America (30°–36°S), limited to the east by the Andes. Precipitation is concentrated in austral winter, mostly associated with the passage of cold fronts. The freezing level over central Chile is typically between 1500 and 2500 m when precipitation is present. In about a third of the cases, however, precipitation occurs accompanied by warm temperatures and freezing levels above 3000 m, leading to a sizeable increment in the pluvial area of Andean basins and setting the stage for hydrometeorological hazards. Here, warm winter storms in central Chile are studied, including a statistical description of their occurrence and an estimate of their hydrological impacts. Remote-sensed data and high-resolution reanalysis are used to explore the synoptic-scale environment of a typical case, generalized later by a compositing analysis. The structure of warm storms is also contrasted with that of the more recurrent cold cases. Precipitation during warm events occurs in the warm sector of a slow-moving cold front because of the intense moisture flux against the mountains in connection with a land-falling atmospheric river. This is in turn driven by a strong zonal jet aloft and reduced mechanical blocking upstream of the Andes. On a broader scale, a key element is the presence of a slowly moving anticyclone over the south Pacific, fostering advection of cold air into midlatitudes. The intense and persistent zonal jet stretches a moist-air corridor from the central Pacific to the west coast of South America.

Corresponding author address: Dr. René Garreaud, Department of Geophysics, Universidad de Chile, Blanco Encalada 2002, Santiago, Chile. E-mail: rgarreau@dgf.uchile.cl
Save
  • Barrett, B. S., Garreaud R. D. , and Falvey M. , 2009: Effect of the Andes Cordillera on precipitation from a midlatitude cold front. Mon. Wea. Rev., 137, 30923109.

    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., Krieger D. B. , and Barlow C. P. , 2011: Multiday circulation and precipitation climatology during winter rain events of differing intensities in central Chile. J. Hydrometeor., 12, 10711085.

    • Search Google Scholar
    • Export Citation
  • Catto, J., Jakob C. , Berry G. , and Nicholls N. , 2012: Relating global precipitation to atmospheric fronts. Geophys. Res. Lett., 39, L10805, doi:10.1029/2012GL051736.

    • Search Google Scholar
    • Export Citation
  • Cortés, G., Vargas X. , and McPhee J. , 2011: Climatic sensitivity of streamflow timing in the extratropical western Andes Cordillera. J. Hydrol., 405, 93109.

    • Search Google Scholar
    • Export Citation
  • Falvey, M., and Garreaud R. , 2007: Wintertime precipitation episodes in central Chile: Associated meteorological conditions and orographic influences. J. Hydrometeor., 8, 171193.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R., 1992: Estimación de la altura de la línea de nieve en cuencas de Chile central. Rev. Chil. Ing. Hidraul., 7, 2132.

  • Garreaud, R., 2007: Precipitation and circulation covariability in the extratropics. J. Climate, 20, 47894797.

  • Garreaud, R., and Rutllant J. , 1996: Análisis meteorológico del los aluviones de Antofagasta y Santiago de Chile en el periodo 1991–1993. Atmosfera, 9, 251271.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R., Vuille M. , Compagnucci R. , and Marengo J. , 2009: Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 180195.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R., Lopez P. , Minvielle M. , and Rojas M. , 2013: Large-scale control on the Patagonia climate. J. Climate, 26, 215–230.

  • Hollinger, J. P., Peirce J. L. , and Poe G. A. , 1990: SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28, 781790.

  • Hoskins, B. J., and Hodges K. I. , 2005: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1993: Cloud Dynamics. International Geophysics Series, Vol. 53, Academic Press, 573 pp.

  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3855.

    • Search Google Scholar
    • Export Citation
  • Krichak, S., Breitgand J. , and Feldstein S. , 2012: A conceptual model for the identification of active Red Sea trough synoptic events over the southeastern Mediterranean. J. Appl. Meteor. Climatol., 51, 962971.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., Allan R. P. , Wood E. F. , Villarini G. , Brayshaw D. J. , and Wade A. J. , 2011: Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett., 38, L23803, doi:10.1029/2011GL049783.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., Minder J. R. , Neiman P. J. , and Sukovich E. , 2010: Relationships between barrier jet heights, orographic precipitation gradients, and streamflow in the northern Sierra Nevada. J. Hydrometeor., 11, 11411156.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., Durran D. R. , and Roe G. H. , 2011: Mesoscale controls on the mountainside snow line. J. Atmos. Sci., 68, 21072127.

  • Montecinos, A., and Aceituno P. , 2003: Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. J. Climate, 16, 281296.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., Neiman P. J. , Ralph F. M. , and Barthold F. , 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358378.

    • Search Google Scholar
    • Export Citation
  • Muñoz, R. C., and Undurraga A. A. , 2010: Daytime mixed layer over the Santiago Basin: Description of two years of observations with a lidar ceilometer. J. Appl. Meteor. Climatol., 49, 17281741.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , White A. B. , Kingsmill D. E. , and Persson P. O. G. , 2002: The statistical relationship between upslope flow and rainfall in California's coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Martin Ralph F. , Persson P. O. G. , White A. B. , Jorgensen D. P. , and Kingsmill D. E. , 2004: Modification of fronts and precipitation by coastal blocking during an intense landfalling winter storm in Southern California: Observations during CALJET. Mon. Wea. Rev., 132, 242273.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Kuo Y.-H. , Wee T.-K. , Ma Z. , Taylor G. H. , and Dettinger M. D. , 2008a: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm Summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Ralph F. M. , Wick G. A. , Lundquist J. , and Dettinger M. D. , 2008b: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeor., 9, 2247.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Sukovich E. M. , Ralph F. M. , and Hughes M. , 2010: A seven-year wind profiler-based climatology of the windward barrier jet along California's northern Sierra Nevada. Mon. Wea. Rev., 138, 12061233.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Schick L. J. , Ralph F. M. , Hughes M. , and Wick G. A. , 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., and Wyman B. , 1985: Upstream effects of mesoscale mountains. J. Atmos. Sci., 42, 9771003.

  • Ralph, F. M., and Dettinger M. D. , 2011: Storms, floods and the science of atmospheric rivers. Eos, Trans. Amer. Geophys. Union, 92, 265266, doi:10.1029/2011EO320001.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Wick G. A. , 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , and Rotunno R. , 2005: Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics. Mon. Wea. Rev., 133, 889910.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Neiman P. J. , Wick G. A. , Gutman S. I. , Dettinger M. D. , Cayan D. R. , and White A. B. , 2006: Flooding on California's Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, doi:10.1029/2006GL026689.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671.

  • Rutz, J. J., and Steenburgh W. J. , 2012: Quantifying the role of atmospheric rivers in the interior western United States. Atmos. Sci. Lett.,13, 257–261, doi:10.1002/asl.392.

  • Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Seluchi, M. E., Garreaud R. D. , Norte F. A. , and Saulo A. C. , 2006: Influence of the subtropical Andes on baroclinic disturbances: A cold front case study. Mon. Wea. Rev., 134, 33173335.

    • Search Google Scholar
    • Export Citation
  • Sepúlveda, S. A., and Padilla C. , 2008: Rain-induced debris and mudflow triggering factors assessment in the Santiago cordilleran foothills, Central Chile. Nat. Hazards, 47, 201215.

    • Search Google Scholar
    • Export Citation
  • Smith, B. L., Yuter S. E. , Neiman P. J. , and Kingsmill D. E. , 2010: Water vapor fluxes and orographic precipitation over Northern California associated with a landfalling atmospheric river. Mon. Wea. Rev., 138, 74100.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2006: Progress on the theory of orographic precipitation. Tectonics, Climate, and Landscape Evolution: Geologic Society of America Special Paper 398, S. D. Willet et al., Eds., Penrose Conference Series., Geologic Society of America, 1–16.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., Forster C. , and Sodemann H. , 2008: Remote sources of water vapor forming precipitation on the Norwegian west coast at 60° N—A tale of hurricanes and an atmospheric river. J. Geophys. Res., 113, D05102, doi:10.1029/2007JD009006.

    • Search Google Scholar
    • Export Citation
  • Viale, M., and Nuñez M. N. , 2011: Climatology of winter orographic precipitation over the subtropical central andes and associated synoptic and regional characteristics. J. Hydrometeor., 12, 481507.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for SSM/I. J. Geophys. Res., 102 (C4 87038718.

  • Wentz, F. J., Smith D. K. , Mears C. A. , and Gentemann C. L. , 2001: Advanced algorithms for QuikScat and SeaWinds/AMSR. Proc. IEEE 2001 International Geoscience and Remote Sensing Symposium 2001, IGARSS'01, Sydney, NSW, Australia, IEEE, 1079–1081.

    • Search Google Scholar
    • Export Citation
  • White, A. B., Gottas D. J. , Henkel A. F. , Neiman P. J. , Ralph F. M. , and Gutman S. I. , 2010: Developing a performance measure for snow-level forecasts. J. Hydrometeor., 11, 739753.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Newell R. E. , 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735.

All Time Past Year Past 30 Days
Abstract Views 423 0 0
Full Text Views 1961 1203 86
PDF Downloads 689 281 17