Surface and Atmospheric Controls on the Onset of Moist Convection over Land

Pierre Gentine Department of Earth and Environmental Engineering, Columbia University, New York, New York

Search for other papers by Pierre Gentine in
Current site
Google Scholar
PubMed
Close
,
Albert A. M. Holtslag Meteorology and Air Quality Section, Wageningen University, Wageningen, Netherlands

Search for other papers by Albert A. M. Holtslag in
Current site
Google Scholar
PubMed
Close
,
Fabio D'Andrea Ecole Normale Supérieure, Paris, France

Search for other papers by Fabio D'Andrea in
Current site
Google Scholar
PubMed
Close
, and
Michael Ek National Centers for Environmental Prediction, Suitland, Maryland

Search for other papers by Michael Ek in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The onset of moist convection over land is investigated using a conceptual approach with a slab boundary layer model. The authors determine the essential factors for the onset of boundary layer clouds over land and study their relative importance. They are 1) the ratio of the temperature to the moisture lapse rates of the free troposphere, that is, the inversion Bowen ratio; 2) the mean daily surface temperature; 3) the relative humidity of the free troposphere; and 4) the surface evaporative fraction. A clear transition is observed between two regimes of moistening of the boundary layer as assessed by the relative humidity at the boundary layer top. In the first so-called wet soil advantage regime, the moistening results from the increase of the mixed-layer specific humidity, which linearly depends on the surface evaporative fraction and inversion Bowen ratio through a dynamic boundary layer factor. In the second so-called dry soil advantage regime, the relative humidity tendency at the boundary layer top is controlled by the thermodynamics and changes in the moist adiabatic induced by the decreased temperature at the boundary layer top and consequent reduction in saturation water vapor pressure. This regime pertains to very deep boundary layers under weakly stratified free troposphere over hot surface conditions. In the context of the conceptual model, a rise in free-tropospheric temperature (global warming) increases the occurrence of deep convection and reduces the cloud cover over moist surfaces. This study provides new intuition and predictive capacity on the mechanism controlling the occurrence of moist convection over land.

Corresponding author address: Pierre Gentine, Columbia University, 500 W. 120th St., New York, NY 10027. E-mail: pg2328@columbia.edu

Abstract

The onset of moist convection over land is investigated using a conceptual approach with a slab boundary layer model. The authors determine the essential factors for the onset of boundary layer clouds over land and study their relative importance. They are 1) the ratio of the temperature to the moisture lapse rates of the free troposphere, that is, the inversion Bowen ratio; 2) the mean daily surface temperature; 3) the relative humidity of the free troposphere; and 4) the surface evaporative fraction. A clear transition is observed between two regimes of moistening of the boundary layer as assessed by the relative humidity at the boundary layer top. In the first so-called wet soil advantage regime, the moistening results from the increase of the mixed-layer specific humidity, which linearly depends on the surface evaporative fraction and inversion Bowen ratio through a dynamic boundary layer factor. In the second so-called dry soil advantage regime, the relative humidity tendency at the boundary layer top is controlled by the thermodynamics and changes in the moist adiabatic induced by the decreased temperature at the boundary layer top and consequent reduction in saturation water vapor pressure. This regime pertains to very deep boundary layers under weakly stratified free troposphere over hot surface conditions. In the context of the conceptual model, a rise in free-tropospheric temperature (global warming) increases the occurrence of deep convection and reduces the cloud cover over moist surfaces. This study provides new intuition and predictive capacity on the mechanism controlling the occurrence of moist convection over land.

Corresponding author address: Pierre Gentine, Columbia University, 500 W. 120th St., New York, NY 10027. E-mail: pg2328@columbia.edu
Save
  • Arakawa, A., 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674–710.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., 1995: Scaling of land atmosphere interactions: An atmospheric modeling perspective. Hydrol. Processes, 9, 679–695.

  • Betts, A. K., 1973: Non-precipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99, 178–196.

  • Betts, A. K., 1985: Mixing-line analysis of clouds and cloudy boundary layers. J. Atmos. Sci., 42, 2751–2763.

  • Betts, A. K., 1992: FIFE atmospheric boundary layer budget methods. J. Geophys. Res., 97 (D17), 18 523–18 531.

  • Betts, A. K., 2004: Coupling between CO2, water vapor, temperature, and radon and their fluxes in an idealized equilibrium boundary layer over land. J. Geophys. Res.,109, D18103, doi:10.1029/2003JD004420.

  • Betts, A. K., and Ridgway W. , 1988: Coupling of the radiative, convective, and surface fluxes over the equatorial Pacific. J. Atmos. Sci.,45, 522–536.

  • Betts, A. K., and Ridgway W. , 1989: Climatic equilibrium of the atmospheric convective boundary layer over a tropical ocean. J. Atmos. Sci., 46, 2621–2641.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Ball J. , 1994: Budget analysis of FIFE 1987 sonde data. J. Geophys. Res., 99, 3655–3666.

  • Boers, R., Melfi S. , and Palm S. P. , 1995: Fractal nature of the planetary boundary-layer depth in the trade-wind cumulus regime. Geophys. Res. Lett., 22, 1705–1708.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Emanuel K. , 2005: On the role of moist processes in tropical intraseasonal variability: Cloud-radiation and moisture-convection feedbacks. J. Atmos. Sci., 62, 2770–2789.

    • Search Google Scholar
    • Export Citation
  • Brient, F., and Bony S. , 2013: Interpretation of the positive low-cloud feedback predicted by a climate model under global warming. Climate Dyn., 40, 2415–2431, doi:10.1007/s00382-011-1279-7.

    • Search Google Scholar
    • Export Citation
  • Brown, A., and Coauthors, 2002: Large-eddy simulation of the diurnal cycle of shallow cumulus convection overland. Quart. J. Roy. Meteor. Soc., 128, 1075–1093.

    • Search Google Scholar
    • Export Citation
  • Businger, J., Wyngaard J. , Izumi Y. , and Bradley E. , 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181–189.

    • Search Google Scholar
    • Export Citation
  • Chagnon, F. J. F., Bras R. L. , and Wang J. , 2004: Climatic shift in patterns of shallow clouds over the Amazon. Geophys. Res. Lett., 31, L24212, doi:10.1029/2004GL021188.

    • Search Google Scholar
    • Export Citation
  • Charney, J., 1975: Dynamics of deserts and drought in Sahel. Quart. J. Roy. Meteor. Soc., 101, 193–202.

  • Charney, J., Stone P. H. , and Quirk W. J. , 1975: Drought in Sahara: Biogeophysical feedback mechanism. Science, 187, 434–435.

  • Crago, R., 1996: Conservation and variability of the evaporative fraction during the daytime. J. Hydrol., 180, 173–194.

  • Crago, R., and Brutsaert W. , 1996: Daytime evaporation and the self-preservation of the evaporative fraction and the Bowen ratio. J. Hydrol., 178, 241–255.

    • Search Google Scholar
    • Export Citation
  • Cuesta, J., and Coauthors, 2008: Multiplatform observations of the seasonal evolution of the Saharan atmospheric boundary layer in Tamanrasset, Algeria, in the framework of the African Monsoon Multidisciplinary Analysis field campaign conducted in 2006. J. Geophys. Res.,113, D00C07, doi:10.1029/2007JD009417.

  • D'Andrea, F., Provenzale A. , Vautard R. , and De Noblet-Decoudré N. , 2006: Hot and cool summers: Multiple equilibria of the continental water cycle. Geophys. Res. Lett., 33 L24807, doi:10.1029/2006GL027972.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J., 1979: Prediction of convective mixed-layer entrainment for realistic capping inversion structure. J. Atmos. Sci., 36, 424–436.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and Wu J. , 2010: The role of entrainment in the diurnal cycle of continental convection. J. Climate, 23, 2722–2738, doi:10.1175/2009JCLI3340.1.

    • Search Google Scholar
    • Export Citation
  • Delire, C., Foley J. , and Thompson S. , 2004: Long-term variability in a coupled atmosphere–biosphere model. J. Climate, 17, 3947–3959.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., and Manabe S. , 1989: The influence of soil wetness on near-surface atmospheric variability. J. Climate, 2, 1447–1462.

    • Search Google Scholar
    • Export Citation
  • Delworth, T., and Manabe S. , 1993: Climate variability and land-surface processes. Adv. Water Resour., 16, 3–20.

  • Ek, M., and Holtslag A. , 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 86–99.

  • Ek, M., and Mahrt L. , 1994: Daytime evolution of relative humidity at the boundary-layer top. Mon. Wea. Rev., 122, 2709–2721.

  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Findell, K. L., Gentine P. , Lintner B. R. , and Kerr C. , 2011: Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation. Nat. Geosci., 4, 434–439, doi:10.1038/ngeo1174.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., Entekhabi D. , Chehbouni A. , Boulet G. , and Duchemin B. , 2007: Analysis of evaporative fraction diurnal behaviour. Agric. For. Meteor., 143, 13–29, doi:10.1016/j.agrformet.2006.11.002.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., Entekhabi D. , and Polcher J. , 2010: Spectral behaviour of a coupled land-surface and boundary-layer system. Bound.-Layer Meteor., 134, 157–180, doi:10.1007/s10546-009-9433-z.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., Entekhabi D. , and Polcher J. , 2011a: The diurnal behavior of evaporative fraction in the soil–vegetation–atmospheric boundary layer continuum. J. Hydrometeor., 12, 1530–1546.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., Polcher J. , and Entekhabi D. , 2011b: Harmonic propagation of variability in surface energy balance within a coupled soil-vegetation-atmosphere system. Water Resour. Res.,47, W05525, doi:10.1029/2010WR009268.

  • Gentine, P., Betts A. K. , Lintner B. R. , Findell K. L. , van Heerwaarden C. C. , Tzella A. , and D'Andrea F. , 2013a: A probabilistic bulk model of coupled mixed layer and convection. Part I: Clear-sky case. J. Atmos. Sci., 70, 1543–1556.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., Betts A. K. , Lintner B. R. , Findell K. L. , van Heerwaarden C. C. , and D'Andrea F. , 2013b: A probabilistic bulk model of coupled mixed layer and convection. Part II: Shallow convection case. J. Atmos. Sci., 70, 1557–1576.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and Bretherton C. S. , 2011: Simulating deep convection with a shallow convection scheme. Atmos. Chem. Phys., 11, 10 389–10 406, doi:10.5194/acp-11-10389-2011.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-Y., and Margulis S. A. , 2011: Investigating the impact of soil moisture and atmospheric stability on cloud development and distribution using a coupled large-eddy simulation and land surface model. J. Hydrometeor., 12, 787–804.

    • Search Google Scholar
    • Export Citation
  • Isham, V., Cox D. R. , Rodríguez-Iturbe I. , Porporato A. , and Manfreda S. , 2005: Representation of space–time variability of soil moisture. Proc. Roy. Soc. London, 461A, 4035–4055, doi:10.1098/rspa.2005.1568.

    • Search Google Scholar
    • Export Citation
  • Katul, G. G., and Parlange M. , 1995: The spatial structure of turbulence at production wavenumbers using orthonormal wavelets. Bound.-Layer Meteor., 75, 81–108.

    • Search Google Scholar
    • Export Citation
  • Katul, G. G., Albertson J. , Chu C. , and Parlange M. , 1994a: Intermittency in atmospheric surface layer turbulence: The orthonormal wavelet representation. Wavelets in Geophysics, E. Foufoula-Georgiou and P. Kumar, Eds., Vol. 4, Wavelet Analysis and Its Applications, Academic Press, 81–106.

  • Katul, G. G., Parlange M. , and Chu C. , 1994b: Intermittency, local isotropy, and non-Gaussian statistics in atmospheric surface layer turbulence. Phys. Fluids, 6, 2480, doi:10.1063/1.868196.

    • Search Google Scholar
    • Export Citation
  • Katul, G. G., and Coauthors, 1999: Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest. Bound.-Layer Meteor., 93, 1–28.

    • Search Google Scholar
    • Export Citation
  • Katul, G. G., Porporato A. , Daly E. , Oishi A. C. , Kim H.-S. , Stoy P. C. , Juang J.-Y. , and Siqueira M. B. , 2007: On the spectrum of soil moisture from hourly to interannual scales. Water Resour. Res., 43, W05428, doi:10.1029/2006WR005356.

    • Search Google Scholar
    • Export Citation
  • Koster, R., and Suarez M. , 1994: The components of a SVAT scheme and their effects on a GCMS hydrological cycle. Adv. Water Resour., 17, 61–78.

    • Search Google Scholar
    • Export Citation
  • Laio, F., Porporato A. , Fernandez-Illescas C. , and Rodríguez-Iturbe I. , 2001: Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress—IV. Discussion of real cases. Adv. Water Resour., 24, 745–762.

    • Search Google Scholar
    • Export Citation
  • Lhomme, J., and Elguero E. , 1999: Examination of evaporative fraction diurnal behaviour using a soil-vegetation model coupled with a mixed-layer model. Hydrol. Earth Syst. Sci., 3, 259–270.

    • Search Google Scholar
    • Export Citation
  • Li, B., and Avissar R. , 1994: The impact of spatial variability of land–surface characteristics on land–surface heat fluxes. J. Climate, 7, 527–537.

    • Search Google Scholar
    • Export Citation
  • Lilly, D., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292–309.

  • Lintner, B. R., Gentine P. , Findell K. L. , D'Andrea F. , Sobel A. H. , and Salvucci G. D. , 2012: An idealized prototype for large-scale land–atmosphere coupling. J. Climate, 26, 2379–2389.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1991: Boundary-layer moisture regimes. Quart. J. Roy. Meteor. Soc., 117, 151–176.

  • Milly, P., and Dunne K. , 1994: Sensitivity of the global water cycle to the water-holding capacity of land. J. Climate, 7, 506–526.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., 2008: Response of the mean global vegetation distribution to interannual climate variability. Climate Dyn., 30, 845–854, doi:10.1007/s00382-007-0329-7.

    • Search Google Scholar
    • Export Citation
  • Paradisi, P., Cesari R. , Donateo A. , Contini D. , and Allegrini P. , 2012: Scaling laws of diffusion and time intermittency generated by coherent structures in atmospheric turbulence. Nonlinear Processes Geophys., 19, 113–126, doi:10.5194/npg-19-113-2012.

    • Search Google Scholar
    • Export Citation
  • Petenko, I., and Bezverkhnii V. , 1999: Temporal scales of convective coherent structures derived from sodar data. Meteor. Atmos. Phys., 71, 105–116.

    • Search Google Scholar
    • Export Citation
  • Pino, D., de Arellano J. V.-G. , and Kim S.-W. , 2006: Representing sheared convective boundary layer by zeroth- and first-order-jump mixed-layer models: Large-eddy simulation verification. J. Appl. Meteor. Climatol., 45, 1224–1243.

    • Search Google Scholar
    • Export Citation
  • Plaza, A. G., and Rogel J. A. , 2000: Spatial patterns and temporal stability of soil moisture across a range of scales in a semi-arid environment. Hydrol. Processes, 14, 1261–1277.

    • Search Google Scholar
    • Export Citation
  • Porporato, A., 2009: Atmospheric boundary-layer dynamics with constant Bowen ratio. Bound.-Layer Meteor., 132, 227–240, doi:10.1007/s10546-009-9400-8.

    • Search Google Scholar
    • Export Citation
  • Porporato, A., Daly E. , and Rodríguez-Iturbe I. , 2004: Soil water balance and ecosystem response to climate change. Amer. Nat., 164, 625–632.

    • Search Google Scholar
    • Export Citation
  • Rabin, R. M., Stadler S. , Wetzel P. J. , Stensrud D. J. , and Gregory M. , 1990: Observed effects of landscape variability on convective clouds. Bull. Amer. Meteor. Soc., 71, 272–280.

    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., 2000: Equilibrium evaporation and the convective boundary layer. Bound-Layer Meteor., 46, 107–141.

  • Raupach, M. R., and Finnigan J. , 1995: Scale issues in boundary-layer meteorology: Surface energy balances in heterogeneous terrain. Hydrol. Processes, 9, 589–612.

    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., Thorncroft C. D. , Diedhiou A. , Lebel T. , Parker D. J. , and Polcher J. , 2006: African monsoon multidisciplinary analysis—An international research project and field campaign, Bull. Amer. Meteor. Soc., 87, 1739–1746.

    • Search Google Scholar
    • Export Citation
  • Rigby, J. R., and Porporato A. , 2006: Simplified stochastic soil-moisture models: A look at infiltration. Hydrol. Earth Syst. Sci., 10, 861–871.

    • Search Google Scholar
    • Export Citation
  • Rio, C., Hourdin F. , Grandpeix J.-Y. , and Lafore J.-P. , 2009: Shifting the diurnal cycle of parameterized deep convection over land. Geophys. Res. Lett.,36, L07809, doi:10.1029/2008GL036779.

  • Robock, A., Vinnikov K. , Schlosser C. , Sperankaya N. A. , and Xue Y. , 1995: Use of midlatitude soil-moisture and meteorological observations to validate soil-moisture simulations with biosphere and bucket models. J. Climate, 8, 15–35.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Iturbe, I., 2000: Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamics. Water Resour. Res., 36, 3–9.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Iturbe, I., Vogel G. , Rigon R. , Entekhabi D. , Castelli F. , and Rinaldo A. , 1995: On the spatial organization of soil-moisture fields. Geophys. Res. Lett., 22, 2757–2760.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Iturbe, I., D'Odorico P. , Porporato A. , and Ridolfi L. , 1999a: On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resour. Res., 35, 3709–3722.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Iturbe, I., Porporato A. , Ridolfi L. , Isham V. , and Cox D. R. , 1999b: Probabilistic modelling of water balance at a point: The role of climate, soil and vegetation, Proc. Roy. Soc., A455, 3789–3805.

    • Search Google Scholar
    • Export Citation
  • Ronda, R., van den Hurk B. , and Holtslag A. A. M. , 2002: Spatial heterogeneity of the soil moisture content and its impact on surface flux densities. J. Hydrometeor., 3, 556–570.

    • Search Google Scholar
    • Export Citation
  • Skoien, J., Bloschl G. , and Western A. , 2003: Characteristic space scales and timescales in hydrology. Water Resour. Res.,39, 1304, doi:10.1029/2002WR001736.

  • Sorbjan, Z., 2008: Local scales of turbulence in the stable boundary layer. Bound.-Layer Meteor., 127, 261–271, doi:10.1007/s10546-007-9260-z.

    • Search Google Scholar
    • Export Citation
  • Stéfanon, M., Drobinski P. , D'Andrea F. , Lebeaupin-Brossier C. , and Bastin S. , 2013: Soil moisture-temperature feedbacks at meso-scale during summer heat waves over western Europe. Climate Dyn., doi:10.1007/s00382-013-1794-9, in press.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33, 605–643, doi:10.1146/annurev.earth.33.092203.122658.

    • Search Google Scholar
    • Export Citation
  • Stull, R., 1988: An Introduction to Boundary Layer Meteorology. Springer, 666 pp.

  • Taylor, C. M., Gounou A. , Guichard F. , Harris P. P. , Ellis R. J. , Couvreux F. , and De Kauwe M. , 2011: Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci., 4, 430–433, doi:10.1038/ngeo1173.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., de Jeu R. A. M. , Guichard F. , Harris P. P. , and Dorigo W. A. , 2012: Afternoon rain more likely over drier soils. Nature, 489, 423–426, doi:10.1038/nature11377.

    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., and Guerau de Arellano J. V. , 2008: Relative humidity as an indicator for cloud formation over heterogeneous land surfaces. J. Atmos. Sci., 65, 3263–3277.

    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., Guerau de Arellano J. V. , Moene A. F. , and Holtslag A. A. M. , 2009: Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development. Quart. J. Roy. Meteor. Soc., 135, 1277–1291, doi:10.1002/qj.431.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Bras R. L. , and Eltahir E. , 2000: The impact of observed deforestation on the mesoscale distribution of rainfall and clouds in Amazonia. J. Hydrometeor., 1, 267–286.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and Coauthors, 2009: Impact of deforestation in the Amazon basin on cloud climatology. Proc. Natl. Acad. Sci. USA, 106, 3670–3674, doi:10.1073/pnas.0810156106.

    • Search Google Scholar
    • Export Citation
  • Western, A., Grayson R. , and Bloschl G. , 2002: Scaling of soil moisture: A hydrologic perspective. Annu. Rev. Earth Planet. Sci., 30, 149–180.

    • Search Google Scholar
    • Export Citation
  • Western, A., Zhou S. , Grayson R. , McMahon T. , Bloschl G. , and Wilson D. , 2004: Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J. Hydrol., 286, 113–134, doi:10.1016/j.jhydrol.2003.09.014.

    • Search Google Scholar
    • Export Citation
  • Westra, D., Steeneveld G. J. , and Holtslag A. A. M , 2012: Some observational evidence for dry soils supporting enhanced high relative humidity at the convective boundary layer top. J. Hydrometeor.,13, 1347–1358.

  • Wheater, H., and Coauthors, 2000: Spatial-temporal rainfall fields: Modelling and statistical aspects. Hydrol. Earth Syst. Sci., 4, 581–601.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-M., Stevens B. , and Arakawa A. , 2009: What controls the transition from shallow to deep convection? J. Atmos. Sci., 66, 1793–1806.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., 1999: Investigation of turbulent processes in the lower troposphere with water vapor DIAL and radar–RASS. J. Atmos. Sci., 56, 1055–1076.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., Bretherton C. S. , Blossey P. N. , and Khairoutdinov M. , 2012: Fast cloud adjustment to increasing CO2 in a superparameterized climate model. J. Adv. Model. Earth Syst, 4, M05001, doi:10.1029/2011MS000092.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., and Shukla J. , 1993: The influence of land-surface properties on Sahel climate. Part 1: Desertification. J. Climate, 6, 2232–2245.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 558 0 0
Full Text Views 2027 857 96
PDF Downloads 1215 235 32