Quantifying Land Surface Temperature Variability for Two Sahelian Mesoscale Regions during the Wet Season

Martin G. De Kauwe Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia

Search for other papers by Martin G. De Kauwe in
Current site
Google Scholar
PubMed
Close
,
Christopher M. Taylor Centre for Ecology and Hydrology, NERC, Wallingford, United Kingdom

Search for other papers by Christopher M. Taylor in
Current site
Google Scholar
PubMed
Close
,
Philip P. Harris Centre for Ecology and Hydrology, NERC, Wallingford, United Kingdom

Search for other papers by Philip P. Harris in
Current site
Google Scholar
PubMed
Close
,
Graham P. Weedon Joint Centre for Hydrometeorological Research, Met Office, Wallingford, United Kingdom

Search for other papers by Graham P. Weedon in
Current site
Google Scholar
PubMed
Close
, and
Richard. J. Ellis Centre for Ecology and Hydrology, NERC, Wallingford, United Kingdom

Search for other papers by Richard. J. Ellis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Land–atmosphere feedbacks play an important role in the weather and climate of many semiarid regions. These feedbacks are strongly controlled by how the surface responds to precipitation events, which regulate the return of heat and moisture to the atmosphere. Characteristics of the surface can result in both differing amplitudes and rates of warming following rain. Spectral analysis is used to quantify these surface responses to rainfall events using land surface temperature (LST) derived from Earth observations (EOs). The authors analyzed two mesoscale regions in the Sahel and identified distinct differences in the strength of the short-term (<5 days) spectral variance, notably, a shift toward lower-frequency variability in forest pixels relative to nonforest areas and an increase in amplitude with decreasing vegetation cover. Consistent with these spectral signatures, areas of forest and, to a lesser extent, grassland regions were found to warm up more slowly than sparsely vegetated or barren pixels. The authors applied the same spectral analysis method to simulated LST data from the Joint UK Land Environment Simulator (JULES) land surface model. A reasonable level of agreement was found with the EO spectral analysis for two contrasting land surface regions. However, JULES shows a significant underestimate in the magnitude of the observed response to rain compared to EOs. A sensitivity analysis of the JULES model highlights an unrealistically high level of soil water availability as a key deficiency, which dampens the models response to rainfall events.

Corresponding author address: Martin G. De Kauwe, Department of Biological Sciences, Macquarie University, Balaclavia Road, Sydney NSW 2109, Australia. E-mail: mdekauwe@gmail.com

Abstract

Land–atmosphere feedbacks play an important role in the weather and climate of many semiarid regions. These feedbacks are strongly controlled by how the surface responds to precipitation events, which regulate the return of heat and moisture to the atmosphere. Characteristics of the surface can result in both differing amplitudes and rates of warming following rain. Spectral analysis is used to quantify these surface responses to rainfall events using land surface temperature (LST) derived from Earth observations (EOs). The authors analyzed two mesoscale regions in the Sahel and identified distinct differences in the strength of the short-term (<5 days) spectral variance, notably, a shift toward lower-frequency variability in forest pixels relative to nonforest areas and an increase in amplitude with decreasing vegetation cover. Consistent with these spectral signatures, areas of forest and, to a lesser extent, grassland regions were found to warm up more slowly than sparsely vegetated or barren pixels. The authors applied the same spectral analysis method to simulated LST data from the Joint UK Land Environment Simulator (JULES) land surface model. A reasonable level of agreement was found with the EO spectral analysis for two contrasting land surface regions. However, JULES shows a significant underestimate in the magnitude of the observed response to rain compared to EOs. A sensitivity analysis of the JULES model highlights an unrealistically high level of soil water availability as a key deficiency, which dampens the models response to rainfall events.

Corresponding author address: Martin G. De Kauwe, Department of Biological Sciences, Macquarie University, Balaclavia Road, Sydney NSW 2109, Australia. E-mail: mdekauwe@gmail.com
Save
  • Anthes, R. A., 1984: Enhancement of convective precipitation by mesoscale variations in vegetative covering in semi-arid regions. J. Climate Appl. Meteor., 23, 541554.

    • Search Google Scholar
    • Export Citation
  • Bagayoko, F., Yonkeu S. , Elbers J. , and van de Giesen N. , 2007: Energy partitioning over the West African savanna: Multi-year evaporation and surface conductance measurements in eastern Burkina Faso. J. Hydrol., 334, 545559.

    • Search Google Scholar
    • Export Citation
  • Bartholome, E. M., and Belward A. S. , 2006: GLC2000: A new approach to global land cover mapping from earth observation data. Int. J. Remote Sens., 26, 19591977.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description. Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699.

    • Search Google Scholar
    • Export Citation
  • Boone, A., and Coauthors, 2009a: The AMMA Land Surface Model Intercomparison Project (ALMIP). Bull. Amer. Meteor. Soc., 90, 1865–1880.

    • Search Google Scholar
    • Export Citation
  • Boone, A., Poccard-Leclercq I. , Xue Y. , Feng J. , and Rosnay P. , 2010: Evaluation of the WAMME model surface fluxes using results from the AMMA land-surface model intercomparison project. Climate Dyn., 35, 127142, doi:10.1007/s00382-009-0653-1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1975: Dynamics of deserts and drought in the Sahel. Quart. J. Roy. Meteor. Soc., 101, 193202.

  • Chopin, F., Berges J. , Desbois M. , Jobard I. , and Lebel T. , 2005: Satellite rainfall probability and estimation: Application to the West Africa during the 2004 rainy season. Eos, Trans. Amer. Geophys. Union,88 (Joint Assembly Suppl.), Abstract H23A-12.

  • Clark, D., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev., 4, 701722.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., 1988: Statistical Power Analysis for the Behavioral Sciences. L. Erlbaum Associates, 567 pp.

  • Cosby, B., Hornberger G. , Clapp R. , and Ginn T. , 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20, 682690.

    • Search Google Scholar
    • Export Citation
  • Cox, P., Betts R. , Bunton C. , Essery R. , Rowntree P. , and Smith J. , 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dyn., 15, 183203.

    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., and Coauthors, 2009: AMMA Land Surface Model Intercomparison Experiment coupled to the Community Microwave Emission Model: ALMIP-MEM. J. Geophys. Res.,114, D05108, doi:10.1029/2008JD010724.

  • Dickinson, R. E., Henderson-Sellers A. , Rosenzweig C. , and Sellers P. J. , 1991: Evapotranspiration models with canopy resistance for use in climate models, a review. Agric. For. Meteor., 54, 337388.

    • Search Google Scholar
    • Export Citation
  • Essery, R., Best M. , Betts R. , Cox P. , and Taylor C. , 2003: Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J. Hydrometeor., 4, 530543.

    • Search Google Scholar
    • Export Citation
  • FAO, cited 2003: State of the world's forests. UN Food and Agriculture Organisation. [Available online at ftp://ftp.fao.org/docrep/fao/005/y7581e/.]

  • Garcia-Carreras, L., Parker D. J. , Taylor C. M. , Reeves C. E. , and Murphy J. G. , 2010: Impact of mesoscale vegetation heterogeneities on the dynamical and thermodynamic properties of the planetary boundary layer. J. Geophys. Res.,115, D03102, doi:10.1029/2009JD012811.

  • Gash, J. H. C., and Coauthors, 1997: The variability of evaporation during the HAPEX-Sahel intensive observation period. J. Hydrol., 189, 385399.

    • Search Google Scholar
    • Export Citation
  • Ghent, D., Kaduk J. , Remedios J. , Ardö J. , and Balzter H. , 2010: Assimilation of land surface temperature into the land surface model JULES with an ensemble Kalman filter. J. Geophys. Res., 115, D19112, doi:10.1029/2010JD014392.

    • Search Google Scholar
    • Export Citation
  • Goutorbe, J. P., and Coauthors, 1997: An overview of HAPEX-Sahel: A study in climate and desertification. J. Hydrol., 189, 417.

  • Grippa, M., and Coauthors, 2011: Land water storage variability over West Africa estimated by Gravity Recovery and Climate Experiment (GRACE) and land surface models. Water Resour. Res., 47, W05549, doi:10.1029/2009WR008856.

    • Search Google Scholar
    • Export Citation
  • Guichard, F., and Coauthors, 2010: An intercomparison of simulated rainfall and evapotranspiration associated with a mesoscale convective system over West Africa. Wea. Forecasting, 25, 3760.

    • Search Google Scholar
    • Export Citation
  • Houldcroft, C., Grey W. , Barnsley M. , Taylor C. , Los S. , and North P. , 2009: New vegetation albedo parameters and global fields of soil background albedo derived from MODIS for use in a climate model. J. Hydrometeor., 10, 183198.

    • Search Google Scholar
    • Export Citation
  • Kohler, M., Kalthoff N. , and Kottmeier C. , 2010: The impact of soil moisture modifications on CBL characteristics in West Africa: A case-study from the AMMA campaign. Quart. J. Roy. Meteor. Soc., 136, 422455.

    • Search Google Scholar
    • Export Citation
  • Koster, R., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140.

  • Kothavala, Z., Arain M. , Black T. , and Verseghy D. , 2005: The simulation of energy, water vapor and carbon dioxide fluxes over common crops by the Canadian Land Surface Scheme (CLASS). Agric. For. Meteor., 133, 89108.

    • Search Google Scholar
    • Export Citation
  • Lauwaet, D., De Ridder K. , and van Lipzig N. P. M. , 2008: The influence of soil and vegetation parameters on atmospheric variables relevant for convection in the Sahel. J. Hydrometeor., 9, 461–476.

    • Search Google Scholar
    • Export Citation
  • Le Barbe, L., and Lebel T. , 1997: Rainfall climatology of the HAPEX-Sahel region during. J. Hydrol., 188–189, 4373.

  • Lomb, N. R., 1976: Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci., 39, 447447.

  • Masson, V., Champeaux J. , Chauvin F. , Meriguet C. , and Lacaze R. , 2003: A global database of land surface parameters at 1-km resolution in meteorological and climate models. J. Climate, 16, 12611282.

    • Search Google Scholar
    • Export Citation
  • Mougin, E., and Coauthors, 2009: The AMMA-CATCH Gourma observatory site in Mali: Relating climatic variations to changes in vegetation, surface hydrology, fluxes and natural resources. J. Hydrol., 375, 1433.

    • Search Google Scholar
    • Export Citation
  • Press, W. H., Teukolsky S. A. , Vetterling W. T. , and Flannery B. P. , 1992: Numerical Recipes in C: The Art of Scientific Computing. 2nd ed. Cambridge University Press, 994 pp.

  • Priestley, M. B., 1979: Spectral Analysis and Time Series. Academic, 890 pp.

  • Redelsperger, J. L., Thorncroft C. D. , Diedhiou A. , Lebel T. , Parker D. J. , and Polcher J. , 2006: African Monsoon Multidisciplinary Analysis: An international research project and field campaign. Bull. Amer. Meteor. Soc., 87, 17391746.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., Houser P. , Berg A. , and Famiglietti J. , 2005: Evaluation of 10 methods for initializing a land surface model. J. Hydrometeor., 6, 146155.

    • Search Google Scholar
    • Export Citation
  • Saux-Picart, S., and Coauthors, 2009: SEtHyS_Savannah: A multiple source land surface model applied to Sahelian landscapes. Agric. For. Meteor., 149, 14211432, doi:10.1016/j.agrformet.2009.03.013.

    • Search Google Scholar
    • Export Citation
  • Scargle, J. D., 1989: Studies in astronomical time-series analysis. III. Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data. Astrophys. J., 343, 874887.

    • Search Google Scholar
    • Export Citation
  • Schulz, M., and Mudelsee M. , 2002: REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci., 28, 24212426.

    • Search Google Scholar
    • Export Citation
  • Schüttemeyer, D., Moene A. F. , Holtslag A. A. M. , and de Bruin H. A. R. , 2008: Evaluation of two land surface schemes used in terrains of increasing aridity in West Africa. J. Hydrometeor., 9, 173–193, doi:10.1175/2007JHM797.1.

    • Search Google Scholar
    • Export Citation
  • Sheng, J., and Zwiers F. , 1998: An improved scheme for time-dependent boundary conditions in atmospheric general circulation models. Climate Dyn., 14, 609613.

    • Search Google Scholar
    • Export Citation
  • Sobrino, J. A., and Romaguera M. , 2004: Land surface temperature retrieval from MSG1-SEVIRI data. Remote Sens. Environ., 92, 247254.

  • Spracklen, D. V., Arnold S. R. , and Taylor C. M. , 2012: Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489, 282285.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., Parker D. J. , and Harris P. P. , 1997: An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett.,34, L15801, doi:10.1029/2007GL030572.

  • Taylor, C. M., Parker D. J. , and Harris P. P. , 2007: An observational case study of mesoscale atmospheric circulations induced by soil moisture. Geophys. Res. Lett.,34, L15801, doi:10.1029/2007GL030572.

  • Taylor, C. M., Gounou A. , Guichard F. , Harris P. P. , Eliis J. , Richard, Couvreux F. , and De Kauwe M. , 2011: Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci., 4, 430433.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., de Jeu R. A. M. , Guichard F. , Harris P. P. , and Dorigo W. A. , 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426.

    • Search Google Scholar
    • Export Citation
  • Teuling, A. J., Seneviratne S. I. , Williams C. , and Troch P. A. , 2006: Observed timescales of evapotranspiration response to soil moisture. Geophys. Res. Lett.,33, L23403, doi:10.1029/2006GL028178.

  • Timouk, F., and Coauthors, 2009: Response of surface energy balance to water regime and vegetation development in a Sahelian landscape. J. Hydrol., 375, 178189.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. S., and Holwill C. J. , 1997: Soil evaporation from tiger bush in south west Niger. J. Hydrol., 189, 426442.

  • Wan, Z., and Dozier J. , 1996: A generalised split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens., 34, 892905.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., and Coauthors, 2010: Intercomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model intercomparison experiment. Climate Dyn., 35, 327, doi:10.1007/s00382-010-0778-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 102 0 0
Full Text Views 1777 1423 87
PDF Downloads 172 60 6