• Abbott, M. B., , Bathurst J. C. , , Cunge J. A. , , O'Connell P. E. , , and Rasmussen J. , 1986a: An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modeling system. J. Hydrol., 87, 4559.

    • Search Google Scholar
    • Export Citation
  • Abbott, M. B., , Bathurst J. C. , , Cunge J. A. , , O'Connell P. E. , , and Rasmussen J. , 1986b: An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 2: Structure of a physically-based, distributed modeling system. J. Hydrol., 87, 6177.

    • Search Google Scholar
    • Export Citation
  • Arnold, J. G., , Srinivasan R. , , Muttiah R. S. , , and Williams J. R. , 1998: Large area hydrologic modeling and assessment. Part I: Model development. J. Amer. Water Resour. Assoc., 34, 7389.

    • Search Google Scholar
    • Export Citation
  • Aubert, D., , Loumagne C. , , and Oudin L. , 2003: Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall-runoff model. J. Hydrol., 280, 145161.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., , Viterbo P. , , Miller M. J. , , and Betts A. K. , 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124, 362383.

    • Search Google Scholar
    • Export Citation
  • Benda, L., , Hassan M. A. , , Church M. , , and May C. L. , 2005: Geomorphology of steepland headwaters: The transition from hillslopes to channels. J. Amer. Water Resour. Assoc., 41, 835851.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , Chen F. , , Mitchell K. E. , , and Janjić Z. I. , 1997: Assessment of land surface and boundary layer models in two operational versions of the NCEP Eta Model using FIFE data. Mon. Wea. Rev., 125, 28962916.

    • Search Google Scholar
    • Export Citation
  • Beven, K. J., 1985: Distributed modelling. Hydrological Forecasting, M. G. Anderson and T. P. Burt, Eds., Wiley, 405–435.

  • Beven, K. J., 1993: Prophecy, reality and uncertainty in distributed hydrological modelling. Adv. Water Resour., 16, 4151.

  • Beven, K. J., , and Kirkby M. J. , 1976: Towards a simple physically based variable contributing model of catchment hydrology. Working Paper 154, School of Geography, University of Leeds, United Kingdom, 11 pp.

  • Beven, K. J., , and Kirkby M. J. , 1979: A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull., 24, 4369.

    • Search Google Scholar
    • Export Citation
  • Beven, K. J., , Calver A. , , and Morris E. M. , 1987: The Institute of Hydrology distributed model. Tech. Rep. 98, Institute of Hydrology, Wallingford, United Kingdom, 32 pp. [Available online at http://nora.nerc.ac.uk/5977/1/IH_098.pdf.]

  • Boone, A., and Coauthors, 2004: The Rhône-Aggregation land surface scheme intercomparison project: An overview. J. Climate, 17, 187208.

    • Search Google Scholar
    • Export Citation
  • Bouilloud, L., and Coauthors, 2010: Coupling the ISBA land surface model and the TOPMODEL hydrological model for Mediterranean flash-flood forecasting: Description, calibration, and validation. J. Hydrometeor., 11, 315333.

    • Search Google Scholar
    • Export Citation
  • Burba, G. G., , McDermitt D. K. , , Grelle A. , , Anderson D. J. , , and Xu L. , 2008: Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers. Global Change Biol., 14, 18541876.

    • Search Google Scholar
    • Export Citation
  • Burnash, R. J. C., 1995: The NWS river forecast system: Catchment modeling. Computer Models of Watershed Hydrology, V. P. Singh, Ed., Water Resources Publications, 311–366.

  • Burnash, R. J. C., , Ferral R. L. , , and McGuire R. A. , 1973: A generalized streamflow simulation system: Conceptual modeling for digital computers. Tech. Rep., U.S. Department of Commerce, National Weather Service, Silver Spring, Maryland, 204 pp.

  • Camporese, M., , Paniconi C. , , Putti M. , , and Salandin P. , 2009: Ensemble Kalman filter data assimilation for a process-based catchment scale model of surface and subsurface flow. Water Resour. Res.,45, W10421, doi:10.1029/2008WR007031.

  • Changnon, S. A., 1987: Detecting drought conditions in Illinois. Illinois State Water Survey Circular 169-87, Department of Energy and Natural Resources, State of Illinois, 36 pp.

  • Chen, F., , and Mitchell K. , 1999: Using the GEWEX/ISLSCP forcing data to simulate global soil moisture fields and hydrological cycle for 1987–1988. J. Meteor. Soc. Japan, 77, 167182.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 1996: Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res., 101, 72517268.

    • Search Google Scholar
    • Export Citation
  • Chen, F., , Janjić Z. , , and Mitchell K. , 1997: Impact of atmospheric-surface layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta numerical model. Bound.-Layer Meteor., 85, 391421.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Coauthors, 2007: Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system. J. Appl. Meteor. Climatol., 46, 694713.

    • Search Google Scholar
    • Export Citation
  • Chen, T. H., and Coauthors, 1997: Cabauw experimental results from the project for intercomparison of land-surface parameterization schemes. J. Climate, 10, 11941215.

    • Search Google Scholar
    • Export Citation
  • Cosby, B. J., , Hornberger G. M. , , Clapp R. B. , , and Ginn T. R. , 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20, 682690.

    • Search Google Scholar
    • Export Citation
  • Crawford, N. H., , and Linsley R. K. , 1966: Digital simulation in hydrology: Stanford Watershed Model IV. Tech. Rep. 39, Stanford University, Palo Alto, CA, 225 pp. [Available online at http://www.hydrocomp.com/publications/StanfordModelIV.PDF.]

  • Dawdy, D. R., , and O'Donnell T. , 1965: Mathematical models of catchment behavior. J. Hydraul. Div., 91, 123127.

  • Dooge, J. C. I., 1992: Hydrologic models and climate change. J. Geophys. Res., 97, 26772686.

  • Duan, Q., , Sorooshian S. , , and Gupta V. K. , 1992: Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res., 28, 10151031.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., , Mitchell K. , , Lin Y. , , Rogers E. , , Grummann P. , , Koren V. , , Gayno G. , , and Tarpley J. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational Mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Falge, E., and Coauthors, 2001: Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteor., 107, 4369.

    • Search Google Scholar
    • Export Citation
  • Foken, T., 2008: The energy balance closure problem: An overview. Ecol. Appl., 18, 13511367.

  • Fortin, J. P., , Turcotte R. , , Massicotte S. , , Moussa R. , , Fitzback J. , , and Villeneuve J. P. , 2001a: A distributed watershed model compatible with remote sensing and GIS data. I: Description of model. J. Hydrol. Eng., 6, 9199.

    • Search Google Scholar
    • Export Citation
  • Fortin, J. P., , Turcotte R. , , Massicotte S. , , Moussa R. , , Fitzback J. , , and Villeneuve J. P. , 2001b: A distributed watershed model compatible with remote sensing and GIS data. II: Application to Chaudière watershed. J. Hydrol. Eng., 6, 100108.

    • Search Google Scholar
    • Export Citation
  • Franchini, M., 1996: Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models. Hydrol. Sci. J., 41, 2139.

    • Search Google Scholar
    • Export Citation
  • Francois, C., , Quesney A. , , and Ottlé C. , 2003: Sequential assimilation of ERS-1 SAR data into a coupled land surface-hydrological model using an extended Kalman filter. J. Hydrometeor., 4, 473487.

    • Search Google Scholar
    • Export Citation
  • Fritschen, L. J., , Qian P. , , Kanemasu E. T. , , Nie D. , , Smith E. A. , , Stewart J. B. , , Verma S. B. , , and Wesely M. L. , 1992: Comparisons of surface flux measurement systems used in FIFE 1989. J. Geophys. Res., 97 (D17), 18 69718 713.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., , Mason S. J. , , Zebiak S. E. , , Ropelewski C. F. , , Basher R. , , and Cane M. A. , 2001: Current approaches to seasonal to interannual climate predictions. Int. J. Climatol., 21, 11111152.

    • Search Google Scholar
    • Export Citation
  • Grayson, R. B., , Moore I. D. , , and McMahon T. A. , 1992: Physically based hydrologic modeling. 1: A terrain-based model for investigative purposes. Water Resour. Res., 28, 26392658.

    • Search Google Scholar
    • Export Citation
  • Gribovszki, Z., , Szilágyi J. , , and Kalicz P. , 2010: Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation—A review. J. Hydrol., 385, 371383.

    • Search Google Scholar
    • Export Citation
  • Gulden, L. E., , Rosero E. , , Yang Z.-L. , , Rodell M. , , Jackson C. S. , , Niu G.-Y. , , Yeh P. J.-F. , , and Famiglietti J. , 2007: Improving land-surface model hydrology: Is an explicit aquifer model better than a deeper soil profile? Geophys. Res. Lett.,34, L09402, doi:10.1029/2007GL029804.

  • Gupta, V. K., , and Sorooshian S. , 1985: The relationship between data and the precision of parameter estimates of hydrologic models. J. Hydrol., 81, 5777.

    • Search Google Scholar
    • Export Citation
  • Horton, R. E., 1935: Surface Runoff Phenomena. Part 1: Analysis of the Hydrograph. Horton Hydrology Laboratory Publication, No. 101, Edward Bros., 73 pp.

  • Ibbitt, R. P., 1970: Systematic parameter fitting for conceptual models of catchment hydrology. Ph.D. thesis, University of London, 408 pp. [Available online at http://docs.niwa.co.nz/library/public/Ibbrisyst.pdf.]

  • Jacquemin, B., , and Noilhan J. , 1990: Sensitivity study and validation of a land surface parameterization using the HAPEX-MOBILHY data set. Bound.-Layer Meteor., 52, 93134.

    • Search Google Scholar
    • Export Citation
  • Johnston, P. R., , and Pilgrim D. H. , 1976: Parameter optimization for watershed models. Water Resour. Res., 12, 477486.

  • Kampf, S. K., 2006: Towards improved representations of hydrologic processes: Linking integrated and distributed hydrologic measurements to a physically-based model for a planar hillslope plot. Water Resources Series Tech. Rep. 183, Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 213 pp. [Available online at http://depts.washington.edu/uwbg/research/Burges/_WRS183-Kampf-2006.pdf.]

  • Knyazikhin, Y., and Coauthors, 1999: MODIS leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) product (MOD15). Algorithm Theoretical Basis Doc., NASA Goddard Space Flight Center, Greenbelt, MD, 126 pp. [Available online at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf.]

  • Kollat, J. B., , and Reed P. M. , 2006: Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design. Adv. Water Resour., 29, 792807.

    • Search Google Scholar
    • Export Citation
  • Kollet, S. J., , and Maxwell R. M. , 2008: Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour. Res., 44, W02402, doi:10.1029/2007WR006004.

    • Search Google Scholar
    • Export Citation
  • Koren, V., , Schaake J. , , Mitchell K. , , Duan Q.-Y. , , Chen F. , , and Baker J. M. , 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104 (D16), 19 56919 585.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , Suarez M. J. , , and Heiser M. , 2000: Variance and predictability of precipitation at seasonal-to-interannual timescales. J. Hydrometeor., 1, 2646.

    • Search Google Scholar
    • Export Citation
  • Kumar, M., 2009: Toward a hydrologic modeling system. Ph.D. thesis, The Pennsylvania State University, 251 pp.

  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, doi:10.1016/j.envsoft.2005.07.004.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., , Reichle R. H. , , Peters-Lidard C. D. , , Koster R. D. , , Zhan X. , , Crow W. T. , , Eylander J. B. , , and Houser P. R. , 2008: A land surface data assimilation framework using the land information system: Description and applications. Adv. Water Resour., 31, 14191432.

    • Search Google Scholar
    • Export Citation
  • Lee, H., , Seo D. J. , , and Koren V. , 2011: Assimilation of streamflow and in-situ soil moisture data into operational distributed hydrologic models: Effects of uncertainties in the data and initial model soil moisture states. Adv. Water Resour., 34, 1597–1615.

    • Search Google Scholar
    • Export Citation
  • Li, H., , Luo L. , , Wood E. F. , , and Schaake J. , 2009: The role of initial conditions and forcing uncertainties in seasonal hydrologic forecasting. J. Geophys. Res.,114, D04114, doi:10.1029/2008JD010969.

  • Li, W., 2010: Implementing the Shale Hills watershed model in application of PIHM. M.S. thesis, Department of Civil Engineering, The Pennsylvania State University, 97 pp.

  • Liang, X., , Lettenmaier D. P. , , Wood E. F. , , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for GCMs. J. Geophys. Res., 99, 415428.

    • Search Google Scholar
    • Export Citation
  • Liang, X., and Coauthors, 1998: The Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) phase 2 (c) Red-Arkansas River basin experiment: 2. Spatial and temporal analysis of energy fluxes. Global Planet. Change, 19, 137159.

    • Search Google Scholar
    • Export Citation
  • Liang, X., , Xie Z. , , and Huang M. , 2003: A new parameterization for surface and groundwater interactions and its impact on water budgets with the variable infiltration capacity (VIC) land surface model. J. Geophys. Res., 108, 8613, doi:10.1029/2002JD003090.

    • Search Google Scholar
    • Export Citation
  • Lin, H., 2006: Temporal stability of soil moisture spatial pattern and subsurface preferential flow pathways in the Shale Hills catchment. Vadose Zone J., 5, 317340.

    • Search Google Scholar
    • Export Citation
  • Lin, H., , and Zhou X. , 2008: Evidence of subsurface preferential flow using soil hydrologic monitoring in the Shale Hills catchment. Eur. J. Soil Sci., 59, 3449.

    • Search Google Scholar
    • Export Citation
  • Lin, H., , Kogelmann W. , , Walker C. , , and Bruns M. A. , 2006: Soil moisture patterns in a forested catchment: A hydropedological perspective. Geoderma, 131, 345368.

    • Search Google Scholar
    • Export Citation
  • Linsley, R. K., , and Crawford N. H. , 1960: Computation of a synthetic streamflow record on a digital computer. Int. Assoc. Sci. Hydrol. Pub., 51, 526538.

    • Search Google Scholar
    • Export Citation
  • Livneh, B., , Restrepo P. J. , , and Lettenmaier D. P. , 2011: Development of a unified land model for prediction of surface hydrology and land-atmosphere interactions. J. Hydrometeor., 12, 12991320.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636646.

  • Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical model. Tellus, 34, 505513.

  • Lundquist, J. D., , and Cayan D. R. , 2002: Seasonal and spatial patterns in diurnal cycles in streamflow in the western United States. J. Hydrometeor., 3, 591603.

    • Search Google Scholar
    • Export Citation
  • Lynch, J. A., 1976: Effects of antecedent moisture on storage hydrographs. Ph.D. thesis, The Pennsylvania State University, 192 pp.

  • Ma, L., , Chabaux F. , , Pelt E. , , Blaes E. , , Jin L. , , and Brantley S. , 2010: Regolith production rates calculated with uranium-series isotopes at Susquehanna/Shale Hills Critical Zone Observatory. Earth Planet. Sci. Lett., 297, 211225.

    • Search Google Scholar
    • Export Citation
  • Ma, X., , and Cheng W. , 1998: A modeling of hydrological processes in a large low plain area including lakes and ponds. J. Japan Soc. Hydrol. Water Resour., 9, 320329.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., , and Ek M. , 1984: The influence of atmospheric stability on potential evaporation. J. Climate Appl. Meteor., 23, 222234.

  • Mahrt, L., , and Pan H. , 1984: A two-layer model of soil hydrology. Bound.-Layer Meteor., 29, 120.

  • Manabe, S., 1969: Climate and the ocean circulation. I. The atmospheric circulation and the hydrology of the Earth's surface. Mon. Wea. Rev., 97, 739774.

    • Search Google Scholar
    • Export Citation
  • Maxwell, R. M., , and Miller N. L. , 2005: Development of a coupled land surface and groundwater model. J. Hydrometeor., 6, 233247.

  • Maxwell, R. M., , Chow F. K. , , and Kollet S. J. , 2007: The groundwater-land-surface-atmosphere connection: Soil moisture effects on the atmospheric boundary layer in fully-coupled simulations. Adv. Water Resour., 30, 24472466.

    • Search Google Scholar
    • Export Citation
  • McNeil, D. D., , and Shuttleworth W. J. , 1975: Comparative measurements of the energy fluxes over a pine forest. Bound.-Layer Meteor., 9, 297313.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mölders, N., , and Rühaak W. , 2002: On the impact of explicitly predicted runoff on the simulated atmospheric response to small-scale land-use changes—An integrated modeling approach. Atmos. Res., 63, 338.

    • Search Google Scholar
    • Export Citation
  • Morris, E. M., 1979: The effect of the small-slope approximation and lower boundary conditions on solutions of the Saint-Venant equations. J. Hydrol., 40, 3147.

    • Search Google Scholar
    • Export Citation
  • Mulvany, T. J., 1851: On the use of self-registering rain and flood gauges in making observations of the relations of rainfall and of flood discharges in a catchment. Trans. Inst. Civ. Eng. Ireland, 4, 18.

    • Search Google Scholar
    • Export Citation
  • Myneni, R. B., and Coauthors, 2002: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ., 83, 214231.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., , and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models. Part I: A discussion of principles. J. Hydrol., 10, 282290.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 2004: Groundwater Fluxes Across Interfaces. National Academies Press, 85 pp.

  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi:10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., , and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549.

    • Search Google Scholar
    • Export Citation
  • Nutter, W. L., 1964: Determination of the head-discharge relationship for a sharp-crested compound weir and a sharp-crested parabolic weir. M.S. thesis, Department of Forest Hydrology, The Pennsylvania State University, 87 pp.

  • Ookouchi, Y., , Segal M. , , Kesseler R. C. , , and Pielke R. , 1984: Evaluation of soil moisture effects of the generation and modification of mesoscale circulation. Mon. Wea. Rev., 112, 22812292.

    • Search Google Scholar
    • Export Citation
  • Oudin, L., , Weisse A. , , Loumagne C. , , and Le Hégarat-Mascle S. , 2003: Assimilation of soil moisture into hydrological models for flood forecasting: A variational approach. Can. J. Remote Sens., 29, 679686.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., , and Anderson D. L. T. , 1994: The prospects for seasonal forecasting—A review paper. Quart. J. Roy. Meteor. Soc., 120, 755793.

    • Search Google Scholar
    • Export Citation
  • Pan, H. L., , and Mahrt L. , 1987: Interaction between soil hydrology and boundary-layer development. Bound.-Layer Meteor., 38, 185202.

  • Pickup, G., 1977: Testing the efficiency of algorithms and strategies for automatic calibration of rainfall-runoff models. Hydrol. Sci. Bull., 22, 257274.

    • Search Google Scholar
    • Export Citation
  • Pokhrel, P., , and Gupta H. V. , 2010: On the use of spatial regularization strategies to improve calibration of distributed watershed models. Water Resour. Res.,46, W01505, doi:10.1029/2009WR008066.

  • Qu, Y., 2004: An integrated hydrologic model for multi-process simulation using semi-discrete finite volume approach. Ph.D. thesis, The Pennsylvania State University, 136 pp.

  • Qu, Y., , and Duffy C. J. , 2007: A semidiscrete finite volume formulation for multiprocess watershed simulation. Water Resour. Res.,43, W08419, doi:10.1029/2006WR005752.

  • Reed, S., , Koren V. , , Smith M. , , Zhang Z. , , Moreda F. , , Seo D.-J. , , and Participants D. M. I. P. , 2004: Overall distributed model intercomparison project results. J. Hydrol., 298, 2760.

    • Search Google Scholar
    • Export Citation
  • Rigon, R., , Bertoldi G. , , and Over T. M. , 2006: GEOtop: A distributed hydrological model with coupled water and energy budgets. J. Hydrometeor., 7, 371388.

    • Search Google Scholar
    • Export Citation
  • Rihani, J. F., , Maxwell R. M. , , and Chow F. K. , 2010: Coupling groundwater and land surface processes: Idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes. Water Resour. Res.,46, W12523, doi:10.1029/2010WR009111.

  • Rosero, E., , Gulden L. E. , , Yang Z.-L. , , De Goncalves L. G. , , Niu G.-Y. , , and Kaheil Y. H. , 2011: Ensemble evaluation of hydrologically enhanced Noah-LSM: Partitioning of the water balance in high-resolution simulations over the Little Washita River experimental watershed. J. Hydrometeor., 12, 4564.

    • Search Google Scholar
    • Export Citation
  • Rutter, A. J., , and Morton A. J. , 1977: A predictive model of rainfall interception in forests. III. Sensitivity of the model to stand parameters and meteorological variables. J. Appl. Ecol., 14, 567588.

    • Search Google Scholar
    • Export Citation
  • Saint-Venant, B., 1871: Theory of unsteady water flow with application to floods and to propagation of tides in river channels. Proc. French Acad. Sci., 73, 148154.

    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., , Koren V. I. , , Duan Q.-Y. , , Mitchell K. , , and Chen F. , 1996: Simple water balance model for estimating runoff at different spatial and temporal scales. J. Geophys. Res., 101, 74617475.

    • Search Google Scholar
    • Export Citation
  • Schlosser, C. A., , Slater A. G. , , Robock A. , , Pitman A. J. , , Vinnikov K. Y. , , Henderson-Sellers A. , , Speranskaya N. A. , , and Mitchell K. , 2000: Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS phase 2(d). Mon. Wea. Rev., 128, 301321.

    • Search Google Scholar
    • Export Citation
  • Seuffert, G., , Gross P. , , Simmer C. , , and Wood E. F. , 2002: The influence of hydrologic modeling on the predicted local weather: Two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model. J. Hydrometeor., 3, 505523.

    • Search Google Scholar
    • Export Citation
  • Sherman, L. K., 1932: Stream flow from rainfall by the unit graph method. Eng. News-Rec., 108, 501505.

  • Shreve, R. L., 1969: Stream lengths and basin areas in topologically random channel networks. J. Geol., 77, 397414.

  • Skøien, J. O., , Blöschl G. , , and Western A. W. , 2003: Characteristic space scales and timescales in hydrology. Water Resour. Res., 39, 1304, doi:10.1029/2002WR001736.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1969: Problems and promises of deterministic extended range forecasting. Bull. Amer. Meteor. Soc., 50, 286311.

  • Smith, M. B., , Seo D.-J. , , Koren V. I. , , Reed S. M. , , Zhang Z. , , Duan Q. , , Moreda F. , , and Cong S. , 2004: The distributed model intercomparison project (DMIP): Motivation and experiment design. J. Hydrol., 298, 426.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., , Duan Q. , , and Gupta V. K. , 1993: Calibration of rainfall-runoff models: application of global optimization to the Sacramento soil moisture accounting model. Water Resour. Res., 29, 11851194.

    • Search Google Scholar
    • Export Citation
  • Sugawara, M., 1969: The flood forecasting by a series storage type model. Floods and Their Computation, IAHS Publ. 84,555559.

  • Thal-Larsen, J. H., 1934: Fluctuations in the level of the phreatic surface with an atmospheric deposit in the form of dew. Bodenkd. Forsch., 4, 223233.

    • Search Google Scholar
    • Export Citation
  • Twine, T. E., and Coauthors, 2000: Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteor., 103, 279300.

    • Search Google Scholar
    • Export Citation
  • van Genuchten, M. T., 1980: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J., 44, 892898.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., , and Mahrt L. , 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14, 512526.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., , Federer C. A. , , and Schloss A. L. , 1998: Potential evaporation functions compared on US watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modeling. J. Hydrol., 207, 147169.

    • Search Google Scholar
    • Export Citation
  • Vrugt, J. A., , Gupta H. V. , , Bastidas L. A. , , Bouten W. , , and Sorooshian S. , 2003: Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour. Res., 39, 1214, doi:10.1029/2002WR001746.

    • Search Google Scholar
    • Export Citation
  • Wagener, T., , McIntyre N. , , Lees M. J. , , Wheater H. S. , , and Gupta H. V. , 2003: Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis. Hydrol. Processes, 17, 455476.

    • Search Google Scholar
    • Export Citation
  • Wallner, M., , Haberlandt U. , , and Dietrich J. , 2012: Evaluation of different calibration strategies for large scale continuous hydrological modelling. Adv. Geosci., 31, 6774.

    • Search Google Scholar
    • Export Citation
  • Weiß, M., , and Menzel L. , 2008: A global comparison of four potential evapotranspiration equations and their relevance to stream flow modelling in semi-arid environments. Adv. Geosci., 18, 1523.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., , and Lettenmaier D. P. , 2006: A test bed for new seasonal hydrologic forecasting approaches in the western United States. Bull. Amer. Meteor. Soc., 87, 16991712.

    • Search Google Scholar
    • Export Citation
  • Wubbels, J. K., 2010: Tree species distribution in relation to stem hydraulic traits and soil moisture in a mixed hardwood forest in central Pennsylvania. M.S. thesis, Department of Horticulture, The Pennsylvania State University, 39 pp.

  • Xie, X., , and Zhang D. , 2010: Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter. Adv. Water Resour., 33, 678690.

    • Search Google Scholar
    • Export Citation
  • Xiu, A., , and Pleim J. E. , 2001: Development of a land surface model. Part I: Application in a mesoscale meteorology model. J. Appl. Meteor., 40, 192209.

    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., 2004: Modeling land surface processes in short-term weather and climate studies. Observation, Theory and Modeling of Atmospheric Variability, X. Zhu et al., Eds., World Scientific Series on Meteorology of East Asia, Vol. 3, World Scientific, 288–313.

  • Yeh, G.-T., , Huang G. B. , , Cheng H.-P. , , Zhang F. , , Lin H.-C. , , Edris E. , , and Richards D. , 2006: A first-principle, physics-based watershed model: WASH123D. Watershed Models, V. P. Singh and D. K. Frevert, Eds., CRC Press, 211–244.

  • Yeh, P. J.-F., , and Eltahir E. A. B. , 2005: Representation of water table dynamics in a land surface scheme. Part I: Model development. J. Climate, 18, 18611880.

    • Search Google Scholar
    • Export Citation
  • York, J. P., , Person M. , , Gutowski W. J. , , and Winter T. C. , 2002: Putting aquifers into atmospheric simulation models: An example from the Mill Creek Watershed, northeastern Kansas. Adv. Water Resour., 25, 221238.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., 1995: Non-local turbulent transport: Pollution dispersion aspects of coherent structure of convective flows. Air Pollution Theory and Simulation, H. Power, N. Moussiopoulos, and C. A. Brebbia, Eds., Vol. I, Air Pollution III, Computational Mechanics Publications, 53–60.

All Time Past Year Past 30 Days
Abstract Views 219 219 17
Full Text Views 56 56 5
PDF Downloads 46 46 4

Development of a Coupled Land Surface Hydrologic Model and Evaluation at a Critical Zone Observatory

View More View Less
  • 1 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
  • | 2 Department of Civil Engineering, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

A fully coupled land surface hydrologic model, Flux-PIHM, is developed by incorporating a land surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater at spatial resolutions sufficient to resolve upland stream networks, Flux-PIHM is able to represent heterogeneities due to topography and soils at high resolution, including spatial structure in the link between groundwater and the surface energy balance (SEB). Flux-PIHM has been implemented at the Shale Hills watershed (0.08 km2) in central Pennsylvania. Multistate observations of discharge, water table depth, soil moisture, soil temperature, and sensible and latent heat fluxes in June and July 2009 are used to manually calibrate Flux-PIHM at hourly temporal resolution. Model predictions from 1 March to 1 December 2009 are evaluated. Both hydrologic predictions and SEB predictions show good agreement with observations. Comparisons of model predictions between Flux-PIHM and the original PIHM show that the inclusion of the complex SEB simulation only brings slight improvement in hourly model discharge predictions. Flux-PIHM adds the ability of simulating SEB to PIHM and does improve the prediction of hourly evapotranspiration, the prediction of total runoff (discharge), and the predictions of some peak discharge events, especially after extended dry periods. Model results reveal that annual average sensible and latent heat fluxes are strongly correlated with water table depth, and the correlation is especially strong for the model grids near the stream.

Corresponding author address: Yuning Shi, Department of Meteorology, 415 Walker Building, The Pennsylvania State University, University Park, PA 16802. E-mail: yshi@psu.edu

Abstract

A fully coupled land surface hydrologic model, Flux-PIHM, is developed by incorporating a land surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater at spatial resolutions sufficient to resolve upland stream networks, Flux-PIHM is able to represent heterogeneities due to topography and soils at high resolution, including spatial structure in the link between groundwater and the surface energy balance (SEB). Flux-PIHM has been implemented at the Shale Hills watershed (0.08 km2) in central Pennsylvania. Multistate observations of discharge, water table depth, soil moisture, soil temperature, and sensible and latent heat fluxes in June and July 2009 are used to manually calibrate Flux-PIHM at hourly temporal resolution. Model predictions from 1 March to 1 December 2009 are evaluated. Both hydrologic predictions and SEB predictions show good agreement with observations. Comparisons of model predictions between Flux-PIHM and the original PIHM show that the inclusion of the complex SEB simulation only brings slight improvement in hourly model discharge predictions. Flux-PIHM adds the ability of simulating SEB to PIHM and does improve the prediction of hourly evapotranspiration, the prediction of total runoff (discharge), and the predictions of some peak discharge events, especially after extended dry periods. Model results reveal that annual average sensible and latent heat fluxes are strongly correlated with water table depth, and the correlation is especially strong for the model grids near the stream.

Corresponding author address: Yuning Shi, Department of Meteorology, 415 Walker Building, The Pennsylvania State University, University Park, PA 16802. E-mail: yshi@psu.edu
Save