SWAT-Based Streamflow Estimation and Its Responses to Climate Change in the Kadongjia River Watershed, Southern Tibet

Rui Sun Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China, Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Rui Sun in
Current site
Google Scholar
PubMed
Close
,
Xueqin Zhang Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xueqin Zhang in
Current site
Google Scholar
PubMed
Close
,
Yang Sun Office of State Flood Control and Drought Relief Headquarters, Beijing, China

Search for other papers by Yang Sun in
Current site
Google Scholar
PubMed
Close
,
Du Zheng Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Du Zheng in
Current site
Google Scholar
PubMed
Close
, and
Klaus Fraedrich KlimaCampus, Universität Hamburg, Germany, Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Klaus Fraedrich in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Runoff estimation and its response to climate change in ungauged or poorly gauged basins based on hydrological models are frontier research issues of the hydrological cycle. For the Kadongjia River watershed (KRW), a poorly gauged watershed located in southern Tibet, China, the Soil and Water Assessment Tool (SWAT) was adapted to model streamflow and its responses to climate change. The average annual streamflow was simulated to be roughly 124.6 mm with relatively small interannual variation during 1974–2010. The seasonal distribution of streamflow was uneven with a maximum in summer and a minimum in winter. Snowmelt, which was mainly produced in April–May, accounted for 4.0% of annual streamflow. Correlations and regression analysis between the interannual variations of major climatic and hydrological variables indicated that precipitation (temperature) had positive (negative) influence on the annual streamflow variation. For the interannual streamflow variations, warmer temperature was slightly more important than the variation of winter precipitation. Comparing streamflow changes in the current years (1980–99) with the future (2030–49), streamflow variations were more sensitive to changing climate in winter and spring than in the other two seasons. Model improvement is expected to enhance the simulation efficiency of SWAT and the analyses of hydrological responses to climatic change in KRW, thus supporting the model's credibility for hydrological cycle research in alpine regions.

Corresponding author address: Xueqin Zhang, Room 3612, 11A, Datun Road, Chaoyang District, Beijing 100101, China. E-mail: zhangxq@igsnrr.ac.cn

Abstract

Runoff estimation and its response to climate change in ungauged or poorly gauged basins based on hydrological models are frontier research issues of the hydrological cycle. For the Kadongjia River watershed (KRW), a poorly gauged watershed located in southern Tibet, China, the Soil and Water Assessment Tool (SWAT) was adapted to model streamflow and its responses to climate change. The average annual streamflow was simulated to be roughly 124.6 mm with relatively small interannual variation during 1974–2010. The seasonal distribution of streamflow was uneven with a maximum in summer and a minimum in winter. Snowmelt, which was mainly produced in April–May, accounted for 4.0% of annual streamflow. Correlations and regression analysis between the interannual variations of major climatic and hydrological variables indicated that precipitation (temperature) had positive (negative) influence on the annual streamflow variation. For the interannual streamflow variations, warmer temperature was slightly more important than the variation of winter precipitation. Comparing streamflow changes in the current years (1980–99) with the future (2030–49), streamflow variations were more sensitive to changing climate in winter and spring than in the other two seasons. Model improvement is expected to enhance the simulation efficiency of SWAT and the analyses of hydrological responses to climatic change in KRW, thus supporting the model's credibility for hydrological cycle research in alpine regions.

Corresponding author address: Xueqin Zhang, Room 3612, 11A, Datun Road, Chaoyang District, Beijing 100101, China. E-mail: zhangxq@igsnrr.ac.cn
Save
  • Arnold, J. G., Srinivasan R. , Muttiah R. S. , and Williams J. R. , 1998: Large area hydrologic modeling and assessment. Part I: Model development. J. Amer. Water Resour. Assoc., 34, 7389.

    • Search Google Scholar
    • Export Citation
  • Arnold, J. G., Srinivasan R. , Muttiah R. S. , and Allen P. M. , 1999: Continental scale simulation of the hydrologic balance. J. Amer. Water Resour. Assoc., 35, 10371051.

    • Search Google Scholar
    • Export Citation
  • Bian, D., Yang Z. , Li L. , Chu D. , Zhuo G. , Bianba C. , Zhaxi Y. , and Dong Y. , 2006: The response of lake area change to climate variations in north Tibetan Plateau during last 30 years. Acta Geogr. Sin., 61, 510518.

    • Search Google Scholar
    • Export Citation
  • Bian, D., Du J. , Hu J. , Li C. , and Li L. , 2009: Response of the water level of the Yamzho Yumco to climate change during 1975–2006. J. Glaciol. Geocryol., 31, 404409.

    • Search Google Scholar
    • Export Citation
  • Bosch, N. S., Allan J. D. , Dolan D. M. , Han H. , and Richards R. P. , 2011: Application of the Soil and Water Assessment Tool for six watersheds of Lake Erie: Model parameterization and calibration. J. Great Lakes Res., 37, 263271.

    • Search Google Scholar
    • Export Citation
  • Bouraoui, F., Benabdallah S. , Jrad A. , and Bidoglio G. , 2005: Application of the SWAT model on the Medjerda river basin (Tunisia). Phys. Chem. Earth, 30, 497507.

    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1974: Climate and Life. Academic Press, 508 pp.

  • Chaplot, V., 2007: Water and soil resources response to rising levels of atmospheric CO2 concentration and to changes in precipitation and air temperature. J. Hydrol., 337, 159171.

    • Search Google Scholar
    • Export Citation
  • Che, T., Li X. , Mool P. K. , and Xu J. C. , 2005: Monitoring glaciers and associated glacial lakes on the east slopes of Mount Xixabangma from remote sensing images. J. Glaciol. Geocryol., 6, 801805.

    • Search Google Scholar
    • Export Citation
  • Chen, G.-C., Huang Z.-W. , Lu X.-F. , and Peng M. , 2002: Characteristics of wetland and its conservation in the Qinghai Plateau. J. Glaciol. Geocryol., 24, 254259.

    • Search Google Scholar
    • Export Citation
  • Chen, X.-Q., Cui P. , Li Y. , Yang Z. , and Qi Y.-Q. , 2007: Changes in glacial lakes and glaciers of post-1986 in the Poiqu River basin, Nyalam, Xizang (Tibet). Geomorphology, 88, 298311.

    • Search Google Scholar
    • Export Citation
  • Chu, D., Pu Q. , Wang D. , Mima C. , Laba Z. , Zhang X. , and Sun R. , 2012a: Water level variations of Yamzho Yumco Lake in Tibet and the main driving forces. J. Mt. Res., 30, 239247.

    • Search Google Scholar
    • Export Citation
  • Chu, D., Qiong P. , Laba Z. , Zhu L. , Zhang X. , Pubu C. , Deji Y. , and Sun R. , 2012b: Remote sensing analysis on lake area variations of Yamzho Yumco in Tibetan Plateau over the past 40 a. J. Lake Sci., 24, 494502.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143.

  • Ding, Y.-H., and Coauthors, 2007: China's national assessment report on climate change (I): Climate change in China and the future trend. Adv. Climate Change Res., 3 (Suppl.), 15.

    • Search Google Scholar
    • Export Citation
  • Ding, Y.-J., Liu S. , Li J. , and Shangguan D. H. , 2006: The retreat of glaciers in response to recent climate warming in western China. Ann. Glaciol., 43, 97105.

    • Search Google Scholar
    • Export Citation
  • Dooge, J. C. I., 1992: Sensitivity of runoff to climate change: A Hortonian approach. Bull. Amer. Meteor. Soc., 73, 20132024.

  • Ezekiel, M., and Fox K. A. , 1959: Methods of Correlation and Regression Analysis: Linear and Curvilinear. 3rd ed. John Wiley, 548 pp.

  • Feyen, L., Vázquez R. , Christiaens K. , Sels O. , and Feyen J. , 2000: Application of a distributed physically-based hydrological model to a medium size catchment. Hydrol. Earth Syst. Sci., 4, 4763.

    • Search Google Scholar
    • Export Citation
  • Ficklin, D. L., Luo Y. Z. , Luedeling E. , and Zhang M. H. , 2009: Climate change sensitivity assessment of a highly agricultural watershed using SWAT. J. Hydrol., 374, 1629.

    • Search Google Scholar
    • Export Citation
  • Fontaine, T. A., Klassen J. F. , Cruickshank T. S. , and Hotchkiss R. H. , 2001: Hydrological response to climate change in the Black Hills of South Dakota, USA. Hydrol. Sci. J., 46, 2740.

    • Search Google Scholar
    • Export Citation
  • Fontaine, T. A., Cruickshank T. S. , Arnold J. G. , and Hotchkiss R. H. , 2002: Development of a snowfall–snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). J. Hydrol., 262, 209223.

    • Search Google Scholar
    • Export Citation
  • Gao, J., Tian L. D. , Liu Y. Q. , and Gong T. L. , 2009: Oxygen isotope variation in the water cycle of the Yamzho Lake Basin in southern Tibetan Plateau. Chin. Sci. Bull., 54, 27582765.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and Shippert T. , 2006: Physically based global downscaling: Climate change projections for a full century. J. Climate, 19, 15891604.

    • Search Google Scholar
    • Export Citation
  • Guan, Z.-H., and Coauthors, 1984: Rivers and Lakes of Tibet. Science Press, 238 pp.

  • Gupta, H. V., Sorooshian S. , and Yapo P. O. , 1998: Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resour. Res., 34, 751763.

    • Search Google Scholar
    • Export Citation
  • Jürgen, S., Karim C. A. , Raghavan S. , and Hong Y. , 2008: Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. J. Hydrol., 352, 3049.

    • Search Google Scholar
    • Export Citation
  • Kang, S., Chen F. , Ye Q. , Jing Z. , Qin D. , and Ren J. , 2007: Glacier retreating dramatically on the Mt. Nyainqêntanglha during the last 40 years. J. Glaciol. Geocryol., 29, 869873.

    • Search Google Scholar
    • Export Citation
  • Kang, S., Xu Y. , You Q. , Flügel W.-A. , Pepin N. , and Yao T. , 2010: Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett., 5, 015101, doi:10.1088/1748-9326/5/1/015101.

    • Search Google Scholar
    • Export Citation
  • Liu, R., and Liu Y. , 2008: Area changes of Lake Qinghai in the latest 20 years based on remote sensing study. J. Lake Sci., 20, 135138.

    • Search Google Scholar
    • Export Citation
  • Liu, T. C., 1995: Changes of Yamzho Lake water stage in Xizang. Acta Geogr. Sin., 15, 5562.

  • Liu, X., and Chen B. , 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 17291742.

  • Liu, X., Yin Z.-Y. , Shao X. , and Qin N. , 2006: Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003. J. Geophys. Res., 111, D19109, doi:10.1029/2005JD006915.

    • Search Google Scholar
    • Export Citation
  • Liu, X., Cheng Z. , and Zhang R. , 2009: The A1B scenario projection for climate change over the Tibetan Plateau in the next 30–50 years. Plateau Meteor., 28, 475484.

    • Search Google Scholar
    • Export Citation
  • Lu, A.-X., Yao T.-D. , Wang L.-H. , Liu S.-Y. , and Guo Z.-L. , 2005: Study on the fluctuations of typical glaciers and lakes in the Tibetan Plateau using remote sensing. J. Glaciol. Geocryol., 27, 783792.

    • Search Google Scholar
    • Export Citation
  • Lu, E., Takle E. S. , and Manoj J. , 2009: The relationships between climatic and hydrological changes in the Upper Mississippi river basin: A SWAT and multi-GCM study. J. Hydrometeor., 11, 437451.

    • Search Google Scholar
    • Export Citation
  • Luosang, L., 2005: Utilization and protection of water resources in the Qinghai-Tibet Plateau. Resour. Sci., 27, 2327.

  • Moriasi, D. N., Arnold J. G. , Van Liew M. W. , Bingner R. L. , Harmel R. D. , and Veith T. L. , 2007: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE, 50, 885900.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and Coauthors, 2000: Special Report on Emissions Scenarios. Cambridge University Press, 599 pp.

  • National Soil Survey Office, 1996: Soil Species of China. China Agriculture Press, 730 pp.

  • Neitsch, S. L., Arnold J. G. , Kiniry J. R. , Williams J. R. , and King K. W. , 2001: Soil and Water Assessment Tool theoretical documentation, version 2000. [Available online at http://swatmodel.tamu.edu/documentation/.]

  • Neitsch, S. L., Arnold J. G. , Kiniry J. R. , Srinivasan R. , and Williams J. R. , 2002: Soil and Water Assessment Tool: User's manual, version 2000. [Available online at http://swatmodel.tamu.edu/documentation/.]

  • Neitsch, S. L., Arnold J. G. , Kiniry J. R. , and Williams J. R. , 2005: Soil and Water Assessment Tool theoretical documentation, version 2005. [Available online at http://swatmodel.tamu.edu/documentation/.]

  • Pisinaras, V., Petalas C. , Gikas G. D. , Gemitzi A. , and Tsihrintzis V. A. , 2010: Hydrological and water quality modeling in a medium-sized basin using the Soil and Water Assessment Tool (SWAT). Desalination, 250, 274286.

    • Search Google Scholar
    • Export Citation
  • Qiao, C., Luo J. C. , Sheng Y. W. , Shen Z. F. , Li J. L. , and Gao L. J. , 2010: Analysis on lake changes since ancient and modern ages using remote sensing in Dagze Co, Tibetan Plateau. J. Lake Sci., 22, 98102.

    • Search Google Scholar
    • Export Citation
  • Refsgaard, J. C., 1997: Parameterisation, calibration and validation of distributed hydrological models. J. Hydrol., 198, 6997.

  • Ritchie, J. T., 1972: A model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res., 8, 12041213.

  • Santhi, C., Arnold J. G. , Williams J. R. , Dugas W. A. , Srinivasan R. , and Hauck L. M. , 2001: Validation of the SWAT model on a large river basin with point and nonpoint sources. J. Amer. Water Resour. Assoc., 37, 11691188.

    • Search Google Scholar
    • Export Citation
  • Saxton, K. E., and Willey P. H. , 2005: Soil water characteristics hydraulic properties calculator. [Available online at http://hydrolab.arsusda.gov/soilwater/Index.htm.]

  • Saxton, K. E., Rawls W. J. , Romberger J. S. , and Papendick R. I. , 1986: Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Amer. J., 50, 10311036.

    • Search Google Scholar
    • Export Citation
  • Shangguan, D., Liu S. , Ding Y. , Zhang Y. , Du E. , and Wu Z. , 2008: Thinning and retreat of Xiao Dongkemadi glacier, Tibetan Plateau, since 1993. J. Glaciol., 54, 949951.

    • Search Google Scholar
    • Export Citation
  • Shao, Z. G., and Coauthors, 2007: Characteristics of the change of major lakes on the Qinghai-Tibet Plateau in the last 25 years. Geol. Bull. China, 26, 16331645.

    • Search Google Scholar
    • Export Citation
  • Shen, D. J., and Chen C. Y. , 1996: Water resources of the Qinghai-Xizang Plateau and its exploitation. J. Nat. Res., 11, 814.

  • Shi, Y. F., and Ren J. W. , 1990: Glacier recession and lake shrinkage indicating a climatic warming and drying trend in central Asia. Ann. Glaciol., 14, 261265.

    • Search Google Scholar
    • Export Citation
  • Sivapalan, M., and Coauthors, 2003: IAHS decade on predictions in ungauged basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences. Hydrol. Sci. J., 48, 857880.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, R., Arnold J. G. , and Jones C. A. , 1998: Hydrologic modeling of the United States with the Soil and Water Assessment Tool. Int. J. Water Resour. Dev., 4, 315325.

    • Search Google Scholar
    • Export Citation
  • Srinivasan, R., Zhang X. , and Arnold J. , 2010: SWAT ungauged: Hydrological budget and crop yield predictions in the Upper Mississippi River Basin. Trans. ASABE, 53, 15331546.

    • Search Google Scholar
    • Export Citation
  • Stonefelt, M. D., Fontaine T. A. , and Hotchkiss R. H. , 2000: Impacts of climate change on water yield in the Upper Wind River basin. J. Amer. Water Resour. Assoc., 36, 321336.

    • Search Google Scholar
    • Export Citation
  • Sun, R., Zhang X. Q. , and Wu Y. H. , 2012: Major ion chemistry of waters and its possible controlling factors in the Yamzhog Yumco Basin, South Tibet. J. Lake Sci., 24, 619627.

    • Search Google Scholar
    • Export Citation
  • Tian, Y., Zhang X. Q. , and Sun R. , 2012: Extracting alpine lake information based on multi-source and multi-temporal satellite images and its uncertainty analysis—A case study in Yamzhog Yumco Basin, South Tibet. J. Glaciol. Geocryol., 34, 563572.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Bao Q. , Hoskins B. , Wu G. X. , and Liu Y. M. , 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, doi:10.1029/2008GL034330.

    • Search Google Scholar
    • Export Citation
  • Wang, X., Liu S. , Yao X. , Guo W. , Yu P. , and Xu J. , 2010: Glacier lake investigation and inventory in the Chinese Himalayas based on the remote sensing data. Acta Geogr. Sin., 65, 2936.

    • Search Google Scholar
    • Export Citation
  • White, K. L., and Chaubey I. , 2005: Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model. J. Amer. Water Resour. Assoc., 41, 10771089.

    • Search Google Scholar
    • Export Citation
  • Wu, K. S., and Johnston C. A. , 2007: Hydrologic response to climatic variability in a Great Lakes watershed: A case study with the SWAT model. J. Hydrol., 337, 187199.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., and Zhu L. , 2008: The response of lake-glacier variations to climate change in Nam Co catchment, central Tibetan Plateau, during 1970–2000. J. Geogr. Sci., 18, 177189.

    • Search Google Scholar
    • Export Citation
  • Xu, B., and Coauthors, 2009: Black soot and the survival of Tibetan glaciers. Proc. Natl. Acad. Sci. USA, 106, 22 11422 118.

  • Xu, C., 2003: Testing the transferability of regression equations derived from small sub-catchments to large area in central Sweden. Hydrol. Earth Syst. Sci., 7, 317324.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., Ding Y. H. , and Li D. L. , 2003: Climatic change over Qinghai and Xizang in 21st century. Plateau Meteor., 22, 451457.

  • Xu, Z. X., Gong T. L. , and Li J. Y. , 2008: Decadal trend of climate in the Tibetan Plateau—Regional temperature and precipitation. Hydrol. Proc., 22, 30563065.

    • Search Google Scholar
    • Export Citation
  • Yao, T., Li Z. , Yang W. , Guo X. , Zhu L. , Kang S. , Wu Y. , and Yu W. , 2010: Glacial distribution and mass balance in the Yarlung Zangbo River and its influence on lakes. Chin. Sci. Bull., 55, 20722078.

    • Search Google Scholar
    • Export Citation
  • Yao, T., Wang Y. , Liu S. , Pu J. , Shen Y. , and Lu A. , 2004: Recent glacial retreat in High Asia in China and its impact on water resource in northwest China. Sci. China, 47D, 10651075.

    • Search Google Scholar
    • Export Citation
  • Ye, Q., Zhu L. , Zheng H. , Naruse R. , Zhang X. , and Kang S. , 2007: Glacier and lake variation in the Yamzhog Yumco basin, southern Tibetan Plateau, from 1980 to 2000 using remote-sensing and GIS technologies. J. Glaciol., 53, 673676.

    • Search Google Scholar
    • Export Citation
  • Ye, Q., Yao T. , Zheng H. , and Zhang X. , 2008: Glacier and lake co-variations and their responses to climate change in the Mapam Yumco Basin on Tibet. Geogr. Res., 27, 11781190.

    • Search Google Scholar
    • Export Citation
  • You, Q., Kang S. , Aguilar E. , and Yan Y. , 2008: Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J. Geophys. Res., 113, D07101, doi:10.1029/2007JD009389.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., Xie H. , Kang S. , Yi D. , and Ackley S. , 2011: Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ., 115, 17331742.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Srinivasan R. , and Hao F. , 2007: Predicting hydrologic response to climate change in the Luohe River basin using the SWAT model. Trans. ASABE, 50, 901910.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., Srinivasan R. , Debele B. , and Hao F. , 2008: Runoff simulation of the headwaters of the Yellow River using the SWAT model with three snowmelt algorithms. J. Amer. Water Resour. Assoc., 44, 4861.

    • Search Google Scholar
    • Export Citation
  • Zhu, L. P., Zhen X. , Wang J. , H. , Xie M. , Kitagawa H. , and Possnert G. , 2009: A ~30,000-year record of environmental changes inferred from Lake Chen Co, southern Tibet. J. Paleolimnol., 42, 343358.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 267 0 0
Full Text Views 1601 1056 69
PDF Downloads 294 59 8