• Allan, R. P., , Soden B. J. , , John V. O. , , Ingram W. , , and Good P. , 2010: Current changes in tropical precipitation. Environ. Res. Lett., 5, 025205, doi:10.1088/1748-9326/5/2/025205.

    • Search Google Scholar
    • Export Citation
  • Aonashi, K., and Coauthors, 2009: GSMaP passive, microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119136.

    • Search Google Scholar
    • Export Citation
  • Baker, R. D., , Lynn B. H. , , Boone A. , , Wei-Kuo T. , , and Simpson J. , 2001: The influence of soil moisture, coastline curvature, and land-breeze circulations on sea-breeze-initiated precipitation. J. Hydrometeor., 2, 193211.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., , Moreau E. , , and Di Michele S. , 2005: Hydrometeor retrieval accuracy using microwave window and sounding channel observations. J. Appl. Meteor., 44, 10161032.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., , Chaboureau J.-P. , , Beljaars A. , , Betts A. K. , , Köhler M. , , Miller M. , , and Redelsperger J.-L. , 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137, doi:10.1256/qj.03.103.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., , and Reid N. , 1993: Detecting the diurnal cycle of rainfall using satellite observations. J. Appl. Meteor., 32, 311322.

  • Betts, A. K., , and Jakob C. , 2002: Evaluation of the diurnal cycle of precipitation, surface thermodynamics and surface fluxes in the ECMWF model using LBA data. J. Geophys. Res., 107, 8045, doi:10.1029/2001JD000427.

    • Search Google Scholar
    • Export Citation
  • Bridgman, H. A., , and Oliver J. E. , 2006: The Global Climate Systems: Patterns, Processes, and Teleconnections. Cambridge University Press, 350 pp.

  • Dai, A., , Giorgi F. , , and Trenberth K. E. , 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104 (D6), 63776402.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , Lin X. , , and Hsu K.-L. , 2007: The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Climate Dyn., 29, 727744.

    • Search Google Scholar
    • Export Citation
  • de Angelis, C. F., , McGregor G. R. , , and Kidd C. , 2004: A 3 year climatology of rainfall characteristics over tropical and subtropical South America based on Tropical Rainfall Measuring Mission Precipitation Radar data. Int. J. Climatol., 24, 385399.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , Janowiak J. E. , , and Kidd C. , 2007: Comparison of near real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764.

    • Search Google Scholar
    • Export Citation
  • Ellis, R. T., , and Chen S. S. , 2004: Effects of sea breeze and local winds on rainfall in south Florida. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 13B.2. [Available online at https://ams.confex.com/ams/pdfpapers/75846.pdf.]

  • Gray, W. M., , and Jacobsen R. W. , 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188.

  • Huffman, G. J., , Adler R. F. , , Bolvin D. T. , , and Nelkin E. J. , 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 3–22.

  • Iguchi, T., , and Meneghini R. , 1994: Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data. J. Atmos. Oceanic Technol., 11, 15071516.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., , Kozu T. , , Kwiatkowski J. , , Meneghini R. , , Awaka J. , , and Okamoto K. , 2009: Uncertainties in the rain profiling algorithm for the TRMM Precipitation Radar. J. Meteor. Soc. Japan, 87A, 130, doi:10.2151/jmsj.87A.1.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., , Janowiak J. E. , , Arkin P. A. , , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and Coauthors, 2010: The ECMWF model climate: Recent progress through improved physical parametrizations. Quart. J. Roy. Meteor. Soc., 136, 11451160, doi:10.1002/qj.634.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Historical overview of numerical weather prediction. Handbook of Weather, Climate, and Water: Dynamics, Climate, Physical Meteorology, Weather Systems, and Measurements, T. D. Potter and B. R. Colman, John Wiley & Sons, Inc., 95–115.

    • Search Google Scholar
    • Export Citation
  • Kelly, G. A., , Bauer P. , , Geer A. J. , , Lopez P. , , and Thepaut J. N. , 2008: Impact of SSM/I observations related to moisture, clouds, and precipitation on global NWP forecast skill. Mon. Wea. Rev., 136, 27132726.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., , and Huffman G. , 2011: Global precipitation measurement. Meteor. Appl., 18, 334353, doi:10.1002/met.284.

  • Kidd, C., , and Levizzani V. , 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci. Discuss., 15, 11091116, doi:10.5194/hess-15-1109-2011.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., , Levizzani V. , , and Bauer P. , 2009: Remote sensing of meteorology and climatology. Prog. Phys. Geogr., 33, 474489.

  • Kidd, C., , Bauer P. , , Turk J. , , Huffman G. J. , , Joyce R. , , Hsu K.-L. , , and Braithwaite D. , 2012: Inter-comparison of high-resolution precipitation products over northwest Europe. J. Hydrometeor., 13, 6783.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., , and Wang B. , 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696.

  • Kubota, H., , and Nitta T. , 2001: Diurnal variations of tropical convection observed during the TOGA-COARE. J. Meteor. Soc. Japan, 79, 815830, doi:10.2151/jmsj.79.815.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , Barnes W. , , Kozu T. , , Shiue J. , , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809816.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., , Carbone R. , , Levizzani V. , , and Tuttle J. , 2008: The propagation and diurnal cycles of deep convection in northern tropical Africa. Quart. J. Roy. Meteor. Soc.,134A, 93–109.

  • Lee, M.-I., , Schubert S. D. , , Suarez M. J. , , Bell T. L. , , and Kim K.-M. , 2007: Diurnal cycle of precipitation in the NASA Seasonal to Interannual Prediction Project atmospheric general circulation model. J. Geophys. Res., 112, D16111, doi:10.1029/2006JD008346.

    • Search Google Scholar
    • Export Citation
  • Liu, C. H., , and Moncrieff M. W. , 1998: A numerical study of the diurnal cycle of tropical oceanic convection. J. Atmos. Sci., 55, 23292344.

    • Search Google Scholar
    • Export Citation
  • Liu, X., , Bai A. , , and Liu C. , 2009: Diurnal variations of summertime precipitation over the Tibetan Plateau in relation to orographically-induced regional circulations. Environ. Res. Lett., 4, 045203, doi:10.1088/1748-9326/4/4/045203.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J. F., , Bauer P. , , and Marecal V. , 2005: The assimilation of SSM/I and TMI rainfall rates in the ECMWF 4D-Var system. Quart. J. Roy. Meteor. Soc., 131, 437458, doi:10.1256/qj.04.17.

    • Search Google Scholar
    • Export Citation
  • McGuffie, K., , and Henderson-Sellers A. , 2005: A Climate Modelling Primer. 3rd Ed. John Wiley & Sons, 296 pp.

  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Miao, J. F., , Kroon L. J. M. , , de Arrelano J. V. G. , , and Holtslag A. A. M. , 2003: Impacts of topography and land degradation on the sea breeze over eastern Spain. Meteor. Atmos. Phys., 84, 157170, doi:10.1007/s00703-002-0579-1.

    • Search Google Scholar
    • Export Citation
  • Michaelides, S., , Levizzani V. , , Anagnostou E. , , Bauer P. , , Kasparis T. , , and Lane J. E. , 2009: Precipitation: Measurement, remote sensing, climatology and modelling. Atmos. Res., 94, 512533.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., , Famiglietti J. S. , , and Zipser E. J. , 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-GHz ice-scattering signature. J. Appl. Meteor., 38, 596606, doi:10.1175/1520-0450.

    • Search Google Scholar
    • Export Citation
  • Moreau, E., , Bauer P. , , and Chevallier F. , 2003: Variational retrieval of rain profiles from spaceborne passive microwave radiance observations. J. Geophys. Res.,108, 4521, doi:10.1029/2002JD003315.

  • Neale, R., , and Slingo J. , 2003: The maritime continent and its role in the global climate: A GCM study. J. Climate, 16, 834848.

  • Negri, A. J., , Bell T. L. , , and Xu L. , 2002: Sampling of the diurnal cycle of precipitation using TRMM. J. Atmos. Oceanic Technol., 19, 13331344.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , and Anders A. M. , 2009: Very high resolution precipitation climatologies from the Tropical Rainfall Measuring Mission precipitation radar. Geophys. Res. Lett., 36, L15815, doi:10.1029/2009GL038026.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , and Zipser E. J. , 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475.

    • Search Google Scholar
    • Export Citation
  • New, M., , Todd M. , , Hulme M. , , and Jones P. , 2001: Precipitation measurements and trends in the twentieth century. Int. J. Climatol., 21, 18991922.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. S., , and Oort A. H. , 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Sanderson, V. L., , Kidd C. , , and McGregor G. R. , 2006: A comparison of TRMM microwave techniques for detecting the diurnal rainfall cycle. J. Hydrometeor., 7, 687704.

    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., , and Arkin P. A. , 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149166.

    • Search Google Scholar
    • Export Citation
  • Sato, T., , Miura H. , , Satoh M. , , Takayabu Y. , , and Wang Y. , 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826.

    • Search Google Scholar
    • Export Citation
  • Shin, D. W., , Cocke S. , , and LaRow T. E. , 2007: Diurnal cycle of precipitation in a climate model. J. Geophys. Res.,112, D13109, doi:10.1029/2006JD008333.

  • Takahashi, H. G., , Fujinami H. , , Yasanari T. , , and Matsumoto J. , 2010: Diurnal rainfall pattern observed by Tropical Rainfall Measuring Mission Precipitation Radar (TRMM-PR) around the Indochina peninsula. J. Geophys. Res., 115, D07109, doi:10.1029/2009JD012155.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., , and Di Giuseppe F. , 2010: Cloud radiative interactions and their uncertainty in climate models. Stochastic Physics and Climate Modelling, T. Palmer and P. Williams, Eds., Cambridge University Press, 327374.

  • Trenberth, K. E., 1991: Climate diagnostics from global analyses: Conservation of mass in ECMWF analysis. J. Climate, 4, 707722.

  • Vondou, D. A., , Nzeukou A. , , Lenouo A. , , and Kamga F. M. , 2010: Seasonal variations in the diurnal patterns of convection in Cameroon–Nigeria and the neighboring areas. Atmos. Sci. Lett., 11, 290300, doi:10.1002/asl.297.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , Zhou L. , , and Hamilton K. , 2007: Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle. Mon. Wea. Rev., 135, 567583.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., , and Slingo J. , 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801.

  • Yang, S., , and Smith E. A. , 2005: Resolving SSM/I–ship radar rainfall discrepancies from AIP-3. Adv. Atmos. Sci., 22, 903914. doi:10.1007/BF02918689.

    • Search Google Scholar
    • Export Citation
  • Zhu, M., , and Atkinson B. W. , 2004: Observed and modelled climatology of the land-sea breeze circulation over the Persian Gulf. Int. J. Climatol., 27, 883905.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 129 129 7
Full Text Views 19 19 1
PDF Downloads 29 29 1

Comparison of Precipitation Derived from the ECMWF Operational Forecast Model and Satellite Precipitation Datasets

View More View Less
  • 1 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, and NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 School of Earth and Environment, University of Leeds, Leeds, United Kingdom
  • | 3 NASA Goddard Space Flight Center, Greenbelt, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Precipitation is an important component of the climate system, and the accurate representation of the diurnal rainfall cycle is a key test of model performance. Although the modeling of precipitation in the cooler midlatitudes has improved, in the tropics substantial errors still occur. Precipitation from the operational ECMWF forecast model is compared with satellite-derived products from the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) and TRMM Precipitation Radar (PR) to assess the mean annual and seasonal diurnal rainfall cycles. The analysis encompasses the global tropics and subtropics (40°N–40°S) over a 7-yr period from 2004 to 2011. The primary aim of the paper is to evaluate the ability of an operational numerical model and satellite products to retrieve subdaily rainfall. It was found that during the first half of the analysis period the ECMWF model overestimated precipitation by up to 15% in the tropics, although after the implementation of a new convective parameterization in November 2007 this bias fell to about 4%. The ECMWF model poorly represented the diurnal cycle, simulating rainfall too early compared to the TMPA and TRMM PR products; the model simulation of precipitation was particularly poor over Indonesia. In addition, the model did not appear to simulate mountain-slope breezes well or adequately capture many of the characteristics of mesoscale convective systems. The work highlights areas for further study to improve the representation of subgrid-scale processes in parameterization schemes and improvements in model resolution. In particular, the proper representation of subdaily precipitation in models is critical for hydrological modeling and flow forecasting.

Corresponding author address: Chris Kidd, NASA Goddard Space Flight, Mail Code 612, Greenbelt, MD, 20771. E-mail: chris.kidd@nasa.gov

Abstract

Precipitation is an important component of the climate system, and the accurate representation of the diurnal rainfall cycle is a key test of model performance. Although the modeling of precipitation in the cooler midlatitudes has improved, in the tropics substantial errors still occur. Precipitation from the operational ECMWF forecast model is compared with satellite-derived products from the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) and TRMM Precipitation Radar (PR) to assess the mean annual and seasonal diurnal rainfall cycles. The analysis encompasses the global tropics and subtropics (40°N–40°S) over a 7-yr period from 2004 to 2011. The primary aim of the paper is to evaluate the ability of an operational numerical model and satellite products to retrieve subdaily rainfall. It was found that during the first half of the analysis period the ECMWF model overestimated precipitation by up to 15% in the tropics, although after the implementation of a new convective parameterization in November 2007 this bias fell to about 4%. The ECMWF model poorly represented the diurnal cycle, simulating rainfall too early compared to the TMPA and TRMM PR products; the model simulation of precipitation was particularly poor over Indonesia. In addition, the model did not appear to simulate mountain-slope breezes well or adequately capture many of the characteristics of mesoscale convective systems. The work highlights areas for further study to improve the representation of subgrid-scale processes in parameterization schemes and improvements in model resolution. In particular, the proper representation of subdaily precipitation in models is critical for hydrological modeling and flow forecasting.

Corresponding author address: Chris Kidd, NASA Goddard Space Flight, Mail Code 612, Greenbelt, MD, 20771. E-mail: chris.kidd@nasa.gov
Save