• Alsdorf, D. E., , and Lettenmaier D. P. , 2003: Tracking fresh water from space. Science, 301, 14911494, doi:10.1126/science.1089802.

  • Anderson, M. C., , Allen R. G. , , Morse A. , , and Kustas W. P. , 2012: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ., 122, 5065, doi:10.1016/j.rse.2011.08.025.

    • Search Google Scholar
    • Export Citation
  • Armanios, D. E., , and Fisher J. B. , 2013: Measuring water availability with limited ground data: Assessing the feasibility of an entirely remote-sensing-based hydrologic budget of the Rufiji Basin, Tanzania, using TRMM, GRACE, MODIS, SRB, and AIRS. Hydrol. Processes, doi:10.1002/hyp.9611, in press.

    • Search Google Scholar
    • Export Citation
  • Bayari, C., , Ozyurt N. , , and Kilani S. , 2009: Radiocarbon age distribution of groundwater in the Konya Closed Basin, central Anatolia, Turkey. Hydrogeol. J., 17, 347365, doi:10.1007/s10040-008-0358-2.

    • Search Google Scholar
    • Export Citation
  • Biancamaria, S., , Mognard N. , , Boone A. , , Grippa M. , , and Josberger E. , 2008: A satellite snow depth multi-year average derived from SSM/I for the high latitude regions. Remote Sens. Environ., 112, 25572568, doi:10.1016/j.rse.2007.12.002.

    • Search Google Scholar
    • Export Citation
  • Bolster, C. H., , Genereux D. P. , , and Saiers J. E. , 2001: Determination of specific yield for the Biscayne Aquifer with a canal-drawdown test. Groundwater, 39, 768777, doi:10.1111/j.1745-6584.2001.tb02368.x.

    • Search Google Scholar
    • Export Citation
  • Brunner, P., , Bauer P. , , Eugster M. , , and Kinzelbach W. , 2004: Using remote sensing to regionalize local precipitation recharge rates obtained from the chloride method. J. Hydrol., 294, 241250, doi:10.1016/j.jhydrol.2004.02.023.

    • Search Google Scholar
    • Export Citation
  • Chang, A. T. C., , Foster J. L. , , Kelly R. E. J. , , Josberger E. G. , , Armstrong R. L. , , and Mognard N. M. , 2005: Analysis of ground-measured and passive-microwave-derived snow depth variations in midwinter across the northern Great Plains. J. Hydrometeor., 6, 2033, doi:10.1175/JHM-405.1.

    • Search Google Scholar
    • Export Citation
  • Contreras, S., , Jobbágy E. G. , , Villagra P. E. , , Nosetto M. D. , , and Puigdefábregas J. , 2011: Remote sensing estimates of supplementary water consumption by arid ecosystems of central Argentina. J. Hydrol., 397, 1022, doi:10.1016/j.jhydrol.2010.11.014.

    • Search Google Scholar
    • Export Citation
  • Delogu, E., and Coauthors, 2012: Reconstruction of temporal variations of evapotranspiration using instantaneous estimates at the time of satellite overpass. Hydrol. Earth Syst. Sci., 16, 29953010, doi:10.5194/hess-16-2995-2012.

    • Search Google Scholar
    • Export Citation
  • Derksen, C., , Toose P. , , Rees A. , , Wang L. , , English M. , , Walker A. , , and Sturm M. , 2010: Development of a tundra-specific snow water equivalent retrieval algorithm for satellite passive microwave data. Remote Sens. Environ., 114, 16991709, doi:10.1016/j.rse.2010.02.019.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., , Sheffield J. , , Wood E. F. , , and Gao H. L. , 2010: Quantifying uncertainty in a remote sensing-based estimate of evapotranspiration over continental USA. Int. J. Remote Sens., 31, 38213865, doi:10.1080/01431161.2010.483490.

    • Search Google Scholar
    • Export Citation
  • Fontugne, M., , Kuzucuoglu C. , , Karabiyikoglu M. , , Hatté C. , , and Pastre J. F. , 1999: From Pleniglacial to Holocene: A C-14 chronostratigraphy of environmental changes in the Konya Plain, Turkey. Quat. Sci. Rev., 18, 573591, doi:10.1016/S0277-3791(98)90098-1.

    • Search Google Scholar
    • Export Citation
  • Gao, F., , Masek J. , , Schwaller M. , , and Hall F. G. , 2006: On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEE Trans. Geosci. Remote. Sens., 44, 22072218, doi:10.1109/TGRS.2006.872081.

    • Search Google Scholar
    • Export Citation
  • Gao, H., , Tang Q. , , Ferguson C. R. , , Wood E. F. , , and Lettenmaier D. P. , 2010: Estimating the water budget of major US river basins via remote sensing. Int. J. Remote Sens., 31 (14), 39553978, doi:10.1080/01431161.2010.483488.

    • Search Google Scholar
    • Export Citation
  • Ghilain, N., , Arboleda A. , , and Gellens-Meulenberghs F. , 2011: Evapotranspiration modelling at large scale using near-real time MSG SEVIRI derived data. Hydrol. Earth Syst. Sci., 15, 771786, doi:10.5194/hess-15-771-2011.

    • Search Google Scholar
    • Export Citation
  • Gleeson, T., , VanderSteen J. , , Sophocleous M. A. , , Taniguchi M. , , Alley W. M. , , Allen D. M. , , and Zhou Y. X. , 2010: Groundwater sustainability strategies. Nat. Geosci., 3, 378379, doi:10.1038/ngeo881.

    • Search Google Scholar
    • Export Citation
  • Gokmen, M., , Vekerdy Z. , , Verhoef A. , , Verhoef W. , , Batelaan O. , , and van der Tol C. , 2012: Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions. Remote Sens. Environ., 121, 261274, doi:10.1016/j.rse.2012.02.003.

    • Search Google Scholar
    • Export Citation
  • Green, T. R., , Taniguchi M. , , Kooi H. , , Gurdak J. J. , , Allen D. M. , , Hiscock K. M. , , Treidel H. , , and Aureli A. , 2011: Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol., 405, 532560, doi:10.1016/j.jhydrol.2011.05.002.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., , and Bolvin D. T. , 2013: TRMM and other data precipitation data set documentation. NASA, 40 pp. [Available online at ftp://precip.gsfc.nasa.gov/pub/trmmdocs/3B42_3B43_doc.pdf.]

  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2003: Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements. Phys. Chem. Earth, 28, 7588, doi:10.1016/S1474-7065(03)00009-3.

    • Search Google Scholar
    • Export Citation
  • Jin, X., , Schaepman M. E. , , Clevers J. G. P. W. , , and Su Z. B. , 2009: Impact and consequences of evapotranspiration changes on water resources availability in the arid Zhangye Basin, China. Int. J. Remote Sens., 30, 32233238, doi:10.1080/01431160802559053.

    • Search Google Scholar
    • Export Citation
  • Johnson, A. I., 1967: Specific yield—Compilation of specific yields for various materials. Geological Survey Water Supply Paper 1662-D, 74 pp.

  • Joyce, R. J., , Janowiak J. E. , , Arkin P. A. , , and Xie P. P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalma, J. D., , McVicar T. R. , , and McCabe M. F. , 2008: Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys., 29, 421469, doi:10.1007/s10712-008-9037-z.

    • Search Google Scholar
    • Export Citation
  • Lubczynski, M. W., , and Gurwin J. , 2005: Integration of various data sources for transient groundwater modeling with spatio-temporally variable fluxes—Sardon study case, Spain. J. Hydrol., 306, 7196, doi:10.1016/j.jhydrol.2004.08.038.

    • Search Google Scholar
    • Export Citation
  • Ma, W., , Hafeez M. , , Rabbani U. , , Ishikawac H. , , and Ma Y. , 2012: Retrieved actual ET using SEBS model from Landsat-5 TM data for irrigation area of Australia. Atmos. Environ., 59, 408414, doi:10.1016/j.atmosenv.2012.05.040.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., , Song M. , , Ishikawa H. , , Yang K. , , Koike T. , , Jia L. , , Menenti M. , , and Su Z. , 2007: Estimation of the regional evaporative fraction over the Tibetan plateau area by using Landsat-7 ETM data and the field observations. J. Meteor. Soc. Japan, 85A, 295309, doi:10.2151/jmsj.85A.295.

    • Search Google Scholar
    • Export Citation
  • McCabe, M. F., , Wood E. F. , , Wójcik R. , , Pan M. , , Sheffield J. , , Gao H. , , and Su H. , 2008: Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies. Remote Sens. Environ., 112, 430444, doi:10.1016/j.rse.2007.03.027.

    • Search Google Scholar
    • Export Citation
  • Muskett, R. R., 2012: Multi-satellite and sensor derived trends and variation of snow water equivalent on the high-latitudes of the northern hemisphere. Int. J. Geosci., 3, 113, doi:10.4236/ijg.2012.31001.

    • Search Google Scholar
    • Export Citation
  • Naing, Z. W., 2011: Groundwater fluxes in the Konya closed basin, Turkey. M.S. thesis, Water Resources Department, University of Twente, 55 pp.

  • Oku, Y., , Ishikawa H. , , and Su Z. B. , 2007: Estimation of land surface heat fluxes over the Tibetan Plateau using GMS data. J. Appl. Meteor. Climatol., 46, 183195, doi:10.1175/JAM2456.1.

    • Search Google Scholar
    • Export Citation
  • Owe, M., , de Jeu R. , , and Holmes T. , 2008: Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res., 113, F01002, doi:10.1029/2007JF000769.

    • Search Google Scholar
    • Export Citation
  • Pagano, T. C., , and Sorooshian S. , 2006: Global water cycle (fundamental, theory, mechanisms). Encyclopedia of Hydrological Sciences, Vol. 5, M. G. Anderson and J. J. McDonnell, Eds., Wiley, 2697–2711.

  • Pan, M., , Wood E. F. , , Wójcik R. , , and McCabe M. F. , 2008: Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sens. Environ., 112, 12821294, doi:10.1016/j.rse.2007.02.039.

    • Search Google Scholar
    • Export Citation
  • Pan, M., , Sahoo A. K. , , Troy T. J. , , Vinukollu R. K. , , Sheffield J. , , and Wood E. F. , 2012: Multisource estimation of long-term terrestrial water budget for major global river basins. J. Climate, 25, 31913206, doi:10.1175/JCLI-D-11-00300.1.

    • Search Google Scholar
    • Export Citation
  • Parsons, A. J., , and Abrahams A. D. , 1994: Geomorphology of desert environments. Geomorphology of Desert Environments, A.D. Abrahams and A.J. Parsons, Eds., CRC Press, 1–12.

  • Penck, A., 1896: Unterschungen über Verbunstung und Abfluss von grösseren Landflächen. Geogr. Abh., 5, 5.

  • Prigent, C., , Chevallier F. , , Karbou F. , , Bauer P. , , and Kelly G. , 2005: AMSU—A land surface emissivity estimation for numerical weather prediction assimilation schemes. J. Appl. Meteor., 44, 416426, doi:10.1175/JAM2218.1.

    • Search Google Scholar
    • Export Citation
  • Sahoo, A. K., , Pan M. , , Troy T. J. , , Vinukollu R. K. , , Sheffield J. , , and Wood E. F. , 2011: Reconciling the global terrestrial water budget using satellite remote sensing. Remote Sens. Environ., 115, 18501865, doi:10.1016/j.rse.2011.03.009.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., , Corti T. , , Davin E. L. , , Hirschi M. , , Jaeger E. B. , , Lehner I. , , Orlowsky B. , , and Teuling A. J. , 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , Clark M. P. , , Armstrong R. L. , , McGinnis D. A. , , and Pulwarty R. S. , 1999: Characteristics of the Western United States snowpack from snowpack telemetry (SNOTEL) data. Water Resour. Res., 35, 21452160, doi:10.1029/1999WR900090.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , Ferguson C. R. , , Troy T. J. , , Wood E. F. , , and McCabe M. F. , 2009: Closing the terrestrial water budget from satellite remote sensing. Geophys. Res. Lett., 36, L07403, doi:10.1029/2009GL037338.

    • Search Google Scholar
    • Export Citation
  • Snyder, R. L., , Orang M. , , Matyac S. , , and Grismer M. E. , 2005: Simplified estimation of reference evapotranspiration from pan evaporation data in California. J. Irrig. Drain. Eng., 131, 249253, doi:10.1061/(ASCE)0733-9437(2005)131:3(249).

    • Search Google Scholar
    • Export Citation
  • Su, H., , McCabe M. F. , , Wood E. F. , , Su Z. , , and Prueger J. H. , 2005: Modeling evapotranspiration during SMACEX: Comparing two approaches for local- and regional-scale prediction. J. Hydrometeor., 6, 910922, doi:10.1175/JHM466.1.

    • Search Google Scholar
    • Export Citation
  • Su, Z., 2002: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci., 6, 8599, doi:10.5194/hess-6-85-2002.

    • Search Google Scholar
    • Export Citation
  • Su, Z., and Coauthors, 2010: Earth observation Water Cycle Multi-Mission Observation Strategy (WACMOS). Hydrol. Earth Syst. Sci. Discuss., 7, 78997956, doi:10.5194/hessd-7-7899-2010.

    • Search Google Scholar
    • Export Citation
  • Swenson, S., , and Wahr J. , 2002: Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J. Geophys. Res., 107, 2193, doi:10.1029/2001JB000576.

    • Search Google Scholar
    • Export Citation
  • Tang, Q., , Gao H. , , Yeh P. , , Oki T. , , Su F. , , and Lettenmaier D. P. , 2010: Dynamics of terrestrial water storage change from satellite and surface observations and modeling. J. Hydrometeor., 11, 156170, doi:10.1175/2009JHM1152.1.

    • Search Google Scholar
    • Export Citation
  • van der Kwast, J., and Coauthors, 2009: Evaluation of the Surface Energy Balance System (SEBS) applied to ASTER imagery with flux-measurements at the SPARC 2004 site (Barrax, Spain). Hydrol. Earth Syst. Sci., 13, 13371347, doi:10.5194/hess-13-1337-2009.

    • Search Google Scholar
    • Export Citation
  • Vinukollu, R. K., , Wood E. F. , , Ferguson C. R. , , and Fisher J. B. , 2011: Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ., 115, 801823, doi:10.1016/j.rse.2010.11.006.

    • Search Google Scholar
    • Export Citation
  • Wada, Y., , van Beek L. P. H. , , and Bierkens M. F. P. , 2012: Nonsustainable groundwater sustaining irrigation: A global assessment. Water Resour. Res., 48, W00L06, doi:10.1029/2011WR010562.

    • Search Google Scholar
    • Export Citation
  • Wahr, J., , Swenson S. , , and Velicogna I. , 2006: Accuracy of GRACE mass estimates. Geophys. Res. Lett., 33, L06401, doi:10.1029/2005GL025305.

    • Search Google Scholar
    • Export Citation
  • Yeh, P. J.-F., , Swenson S. C. , , Famiglietti J. S. , , and Rodell M. , 2006: Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res., 42, W12203, doi:10.1029/2006WR005374.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 128 128 26
Full Text Views 8 8 5
PDF Downloads 11 11 6

Assessing Groundwater Storage Changes Using Remote Sensing–Based Evapotranspiration and Precipitation at a Large Semiarid Basin Scale

View More View Less
  • 1 Department of Water Resources, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, Netherlands
  • | 2 Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium, and School of the Environment, Flinders University, Adelaide, South Australia, Australia
  • | 3 Department of Water Resources, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, Netherlands
© Get Permissions
Restricted access

Abstract

A method is presented that uses remote sensing (RS)-based evapotranspiration (ET) and precipitation estimates with improved accuracies under semiarid conditions to quantify a spatially distributed water balance, for analyzing groundwater storage changes due to supplementary water uses. The method is tested for the semiarid Konya basin (Turkey), one of the largest endorheic basins in the world. Based on the spatially distributed water balance estimation, the mean irrigation for croplands was 308 mm yr−1, which corresponds to a total reduction of 2270 million cubic meters per year (106 m3 yr−1, or MCM yr−1) in the groundwater storage during the study period 2005–09. The storage change estimated as the residual of the spatially distributed water balance was confirmed by the volume change calculated from groundwater table observations. To obtain an improved precipitation distribution, the monthly Tropical Rainfall Measuring Mission (TRMM) rainfall product was assessed. After a bias removal, TRMM data were combined with the snow water equivalent estimated by a multivariate analysis using snow gauge observations, the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover product, and the digital elevation model. With respect to the distribution of ET, the standard SEBS and the soil moisture integrated SEBS-SM models were compared; SEBS-SM proved to better reflect the water-limited evapotranspiration regime of semiarid regions. The RS-based distributed water balance calculation as presented in this study can be applied in other large basins, especially in semiarid and arid regions. It is capable of estimating spatially distributed water balances and storage changes, which otherwise, by ground-based point measurements, would not be feasible.

Corresponding author address: Mustafa Gokmen, Department of Water Resources, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands. E-mail: mustaf.gokmen@gmail.com

This article is included in the The Catchment-scale Hydrological Modeling & Data Assimilation (CAHMDA-V) special collection.

Abstract

A method is presented that uses remote sensing (RS)-based evapotranspiration (ET) and precipitation estimates with improved accuracies under semiarid conditions to quantify a spatially distributed water balance, for analyzing groundwater storage changes due to supplementary water uses. The method is tested for the semiarid Konya basin (Turkey), one of the largest endorheic basins in the world. Based on the spatially distributed water balance estimation, the mean irrigation for croplands was 308 mm yr−1, which corresponds to a total reduction of 2270 million cubic meters per year (106 m3 yr−1, or MCM yr−1) in the groundwater storage during the study period 2005–09. The storage change estimated as the residual of the spatially distributed water balance was confirmed by the volume change calculated from groundwater table observations. To obtain an improved precipitation distribution, the monthly Tropical Rainfall Measuring Mission (TRMM) rainfall product was assessed. After a bias removal, TRMM data were combined with the snow water equivalent estimated by a multivariate analysis using snow gauge observations, the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover product, and the digital elevation model. With respect to the distribution of ET, the standard SEBS and the soil moisture integrated SEBS-SM models were compared; SEBS-SM proved to better reflect the water-limited evapotranspiration regime of semiarid regions. The RS-based distributed water balance calculation as presented in this study can be applied in other large basins, especially in semiarid and arid regions. It is capable of estimating spatially distributed water balances and storage changes, which otherwise, by ground-based point measurements, would not be feasible.

Corresponding author address: Mustafa Gokmen, Department of Water Resources, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands. E-mail: mustaf.gokmen@gmail.com

This article is included in the The Catchment-scale Hydrological Modeling & Data Assimilation (CAHMDA-V) special collection.

Save