• Albertson, J. D., , and Parlange M. B. , 1999: Natural integration of scalar fluxes from complex terrain. Adv. Water Resour., 23, 239252, doi:10.1016/S0309-1708(99)00011-1.

    • Search Google Scholar
    • Export Citation
  • Alfieri, J. G., and Coauthors, 2012: On the discrepancy between eddy covariance and lysimetry-based surface flux measurements under strongly advective conditions. Adv. Water Resour., 50, 6278, doi:10.1016/j.advwatres.2012.07.008.

    • Search Google Scholar
    • Export Citation
  • Aubinet, M., and Coauthors, 2010: Direct advection measurements do not help to solve the night-time CO2 closure problem: Evidence from three different forests. Agric. For. Meteor., 150, 655664, doi:10.1016/j.agrformet.2010.01.016.

    • Search Google Scholar
    • Export Citation
  • Aubinet, M., , Vesala T. , , and Papale D. , 2012: Eddy Covariance: A Practical Guide to Measurement and Data Analysis. Springer, 438 pp.

  • Baldocchi, D. D., , and Rao K. S. , 1995: Intra-field variability of scalar flux densities across a transition between a desert and an irrigated potato field. Bound.-Layer Meteor., 76, 109136, doi:10.1007/BF00710893.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., , Harman I. N. , , and Finnigan J. J. , 2012: The wind in the willows: Flows in forest canopies in complex terrain. Annu. Rev. Fluid Mech.,44, 479–504, doi:10.1146/annurev-fluid-120710-101036.

  • Brutsaert, W., 1982: Evaporation into the Atmosphere: Theory, History, and Applications. Kluwer, 299 pp.

  • Brutsaert, W., , and Yeh G. T. , 1970: A power wind law for turbulent transfer computations. Water Resour. Res., 6, 1387–1391, doi:10.1029/WR006i005p01387.

    • Search Google Scholar
    • Export Citation
  • Eichinger, W. E., , and Cooper D. I. , 2007: Using lidar remote sensing for spatially resolved measurements of evaporation and other meteorological parameters. Agron. J., 99, 255271, doi:10.2134/agronj2005.0112S.

    • Search Google Scholar
    • Export Citation
  • Etzold, S., , Buchmann N. , , and Eugster W. , 2010: Contribution of advection to the carbon budget measured by eddy covariance at a steep mountain slope forest in Switzerland. Biogeosciences, 7, 24612475, doi:10.5194/bg-7-2461-2010.

    • Search Google Scholar
    • Export Citation
  • Feigenwinter, C., , Bernhofer C. , , and Vogt R. , 2004: The influence of advection on the short term CO2-budget in and above a forest canopy. Bound.-Layer Meteor., 113, 201224, doi:10.1023/B:BOUN.0000039372.86053.ff.

    • Search Google Scholar
    • Export Citation
  • Feigenwinter, C., and Coauthors, 2008: Comparison of horizontal and vertical advective CO2 fluxes at three forest sites. Agric. For. Meteor., 148, 1224, doi:10.1016/j.agrformet.2007.08.013.

    • Search Google Scholar
    • Export Citation
  • Figuerola, P. I., , and Berliner P. R. , 2005: Evapotranspiration under advective conditions. Int. J. Biometeorol., 49, 403416, doi:10.1007/s00484-004-0252-0.

    • Search Google Scholar
    • Export Citation
  • Finnigan, J., 2004: The footprint concept in complex terrain. Agric. For. Meteor., 127, 117129, doi:10.1016/j.agrformet.2004.07.008.

  • Foken, T., 2008: The energy balance closure problem: An overview. Ecol. Appl., 18, 13511367, doi:10.1890/06-0922.1.

  • Foken, T., and Coauthors, 2010: Energy balance closure for the LITFASS-2003 experiment. Theor. Appl. Climatol., 101, 149160, doi:10.1007/s00704-009-0216-8.

    • Search Google Scholar
    • Export Citation
  • Franssen, H. J. H., , Stockli R. , , Lehner I. , , Rotenberg E. , , and Seneviratne S. I. , 2010: Energy balance closure of eddy-covariance data: A multisite analysis for European FLUXNET stations. Agric. For. Meteor., 150, 15531567, doi:10.1016/j.agrformet.2010.08.005.

    • Search Google Scholar
    • Export Citation
  • Froidevaux, M., , Higgins C. W. , , Simeonov V. , , Ristori P. , , Pardyjak E. , , Serikov I. , , and Parlange M. B. , 2013: A new Raman lidar to measure water vapor in the atmospheric boundary layer. Adv. Water Resour., 51, 345356, doi:10.1016/j.advwatres.2012.04.008.

    • Search Google Scholar
    • Export Citation
  • Hanks, R. J., , Allen L. H. , , and Gardner H. R. , 1971: Advection and evapotranspiration of wide-row sorghum in central GREAT PLAINS. Agron. J., 63, 520–527, doi:10.2134/agronj1971.00021962006300040002x.

    • Search Google Scholar
    • Export Citation
  • Higgins, C. W., 2012: A-posteriori analysis of surface energy budget closure to determine missed energy pathways. Geophys. Res. Lett., 39, L19403, doi:10.1029/2012GL052918.

    • Search Google Scholar
    • Export Citation
  • Higgins, C. W., , Foidevaux M. , , Simeonov V. , , and Parlange M. , 2012: The importance of scale for Taylor's hypothesis. Bound.-Layer Meteor., 143, 379391, doi:10.1007/s10546-012-9701-1.

    • Search Google Scholar
    • Export Citation
  • Hiller, R., , Zeeman M. J. , , and Eugster W. , 2008: Eddy-covariance flux measurements in the complex terrain of an Alpine valley in Switzerland. Bound.-Layer Meteor., 127, 449467, doi:10.1007/s10546-008-9267-0.

    • Search Google Scholar
    • Export Citation
  • Itier, B., , Brunet Y. , , McAneney K. J. , , and Lagouarde J. P. , 1994: Downwind evolution of scalar fluxes and surface-resistance under conditions of local advection. Part I. A reappraisal of boundary conditions. Agric. For. Meteor., 71, 211225, doi:10.1016/0168-1923(94)90012-4.

    • Search Google Scholar
    • Export Citation
  • Katul, G. G., , and Parlange M. B. , 1992: A Penman-Brutsaert model for wet surface evaporation. Water Resour. Res., 28, 121126, doi:10.1029/91WR02324.

    • Search Google Scholar
    • Export Citation
  • Kljun, N., , Calanca P. , , Rotachhi M. W. , , and Schmid H. P. , 2004: A simple parameterisation for flux footprint predictions. Bound.-Layer Meteor., 112, 503523, doi:10.1023/B:BOUN.0000030653.71031.96.

    • Search Google Scholar
    • Export Citation
  • Kochendorfer, J., , and Paw U K. T. , 2011: Field estimates of scalar advection across a canopy edge. Agric. For. Meteor., 151, 585594, doi:10.1016/j.agrformet.2011.01.003.

    • Search Google Scholar
    • Export Citation
  • Kroon, L. J. M., , and Debruin H. A. R. , 1995: The Crau field experiment: Turbulent exchange in the surface-layer under conditions of strong local advection. J. Hydrol., 166, 327351, doi:10.1016/0022-1694(94)05092-C.

    • Search Google Scholar
    • Export Citation
  • Mauder, M., , Desjardins R. L. , , Pattey E. , , and Worth D. , 2010: An attempt to close the daytime surface energy balance using spatially-averaged flux measurements. Bound.-Layer Meteor., 136, 175191, doi:10.1007/s10546-010-9497-9.

    • Search Google Scholar
    • Export Citation
  • Moderow, U., and Coauthors, 2009: Available energy and energy balance closure at four coniferous forest sites across Europe. Theor. Appl. Climatol., 98, 397412, doi:10.1007/s00704-009-0175-0.

    • Search Google Scholar
    • Export Citation
  • Oncley, S. P., and Coauthors, 2007: The Energy Balance Experiment EBEX-2000. Part I: Overview and energy balance. Bound.-Layer Meteor., 123, 128, doi:10.1007/s10546-007-9161-1.

    • Search Google Scholar
    • Export Citation
  • Park, Y. S., , and Paw U K. T. , 2004: Numerical estimations of horizontal advection inside canopies. J. Appl. Meteor., 43, 15301538, doi:10.1175/JAM2152.1.

    • Search Google Scholar
    • Export Citation
  • Parlange, M. B., , Katul G. G. , , Folegatti M. V. , , and Nielsen D. R. , 1993: Evaporation and the field scale soil-water diffusivity function. Water Resour. Res., 29, 12791286, doi:10.1029/93WR00094.

    • Search Google Scholar
    • Export Citation
  • Parlange, M. B., , Eichinger W. E. , , and Albertson J. D. , 1995: Regional-scale evaporation and the atmospheric boundary-layer. Rev. Geophys., 33, 99124, doi:10.1029/94RG03112.

    • Search Google Scholar
    • Export Citation
  • Prueger, J. H., , Hipps L. E. , , and Cooper D. I. , 1996: Evaporation and the development of the local boundary layer over an irrigated surface in an arid region. Agric. For. Meteor., 78, 223237, doi:10.1016/0168-1923(95)02234-1.

    • Search Google Scholar
    • Export Citation
  • Savelyev, S. A., , and Taylor P. A. , 2005: Internal boundary layers: I. Height formulae for neutral and diabatic flows. Bound.-Layer Meteor., 115, 125, doi:10.1007/s10546-004-2122-z.

    • Search Google Scholar
    • Export Citation
  • Schmid, H. P., 1997: Experimental design for flux measurements: Matching scales of observations and fluxes. Agric. For. Meteor., 87, 179200, doi:10.1016/S0168-1923(97)00011-7.

    • Search Google Scholar
    • Export Citation
  • Staebler, R. M., , and Fitzjarrald D. R. , 2004: Observing subcanopy CO2 advection. Agric. For. Meteor., 122, 139156, doi:10.1016/j.agrformet.2003.09.011.

    • Search Google Scholar
    • Export Citation
  • Sutton, O. G., 1934: Wind structure and evaporation in a turbulent atmosphere. Proc. Roy. Soc. London, 146A, 701722, doi:10.1098/rspa.1934.0183.

    • Search Google Scholar
    • Export Citation
  • Tanny, J., and Coauthors, 2008: Evaporation from a small water reservoir: Direct measurements and estimates. J. Hydrol., 351, 218229, doi:10.1016/j.jhydrol.2007.12.012.

    • Search Google Scholar
    • Export Citation
  • Wilson, K., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agric. For. Meteor., 113, 223243, doi:10.1016/S0168-1923(02)00109-0.

    • Search Google Scholar
    • Export Citation
  • Zermeño-Gonzalez, A., , and Hipps L. E. , 1997: Downwind evolution of surface fluxes over a vegetated surface during local advection of heat and saturation deficit. J. Hydrol., 192, 189210, doi:10.1016/S0022-1694(96)03108-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 58 58 9
Full Text Views 5 5 0
PDF Downloads 9 9 0

Measured and Estimated Water Vapor Advection in the Atmospheric Surface Layer

View More View Less
  • 1 Department of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon
  • | 2 Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah
  • | 3 School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
© Get Permissions
Restricted access

Abstract

The flux of water vapor due to advection is measured using high-resolution Raman lidar that was orientated horizontally across a land–lake transition. At the same time, a full surface energy balance is performed to assess the impact of scalar advection on energy budget closure. The flux of water vapor due to advection is then estimated with analytical solutions to the humidity transport equation that show excellent agreement with the field measurements. Although the magnitude of the advection was not sufficient to account for the total energy deficit for this field site, the analytical approach is used to explore situations where advection would be the dominant transport mechanism. The authors find that advection is at maximum when the measurement height is 0.036 times the distance to a land surface transition. The framework proposed in this paper can be used to predict the potential impact of advection on surface flux measurements prior to field deployment and can be used as a data analysis algorithm to calculate the flux of water vapor due to advection from field measurements.

Corresponding author address: Chad Higgins, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331. E-mail: chad.higgins@oregonstate.edu

Abstract

The flux of water vapor due to advection is measured using high-resolution Raman lidar that was orientated horizontally across a land–lake transition. At the same time, a full surface energy balance is performed to assess the impact of scalar advection on energy budget closure. The flux of water vapor due to advection is then estimated with analytical solutions to the humidity transport equation that show excellent agreement with the field measurements. Although the magnitude of the advection was not sufficient to account for the total energy deficit for this field site, the analytical approach is used to explore situations where advection would be the dominant transport mechanism. The authors find that advection is at maximum when the measurement height is 0.036 times the distance to a land surface transition. The framework proposed in this paper can be used to predict the potential impact of advection on surface flux measurements prior to field deployment and can be used as a data analysis algorithm to calculate the flux of water vapor due to advection from field measurements.

Corresponding author address: Chad Higgins, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331. E-mail: chad.higgins@oregonstate.edu
Save