• Albers, S. C., , McGinley J. A. , , Birkenheuer D. L. , , and Smart J. R. , 1996: The Local Analysis and Prediction System (LAPS): Analyses of clouds, precipitation, and temperature. Wea. Forecasting, 11, 273287, doi:10.1175/1520-0434(1996)011<0273:TLAAPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bitew, M. M., , Gebremichael M. , , Ghebremichael L. T. , , and Bayissa Y. A. , 2012: Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia. J. Hydrometeor., 13, 338350, doi:10.1175/2011JHM1292.1.

    • Search Google Scholar
    • Export Citation
  • Borga, M., , Boscolo P. , , Zanon F. , , and Sangati M. , 2007: Hydrometeorological analysis of the 29 August 2003 flash flood in the eastern Italian Alps. J. Hydrometeor., 8, 10491067, doi:10.1175/JHM593.1.

    • Search Google Scholar
    • Export Citation
  • Bray, M., , Han D. , , Xuan Y. , , Bates P. , , and Williams M. , 2011: Rainfall uncertainty for extreme events in NWP downscaling model. Hydrol. Processes, 25, 13971406, doi:10.1002/hyp.7905.

    • Search Google Scholar
    • Export Citation
  • Delrieu, G., and Coauthors, 2005: The catastrophic flash-flood event of 8–9 September 2002 in the Gard region, France: A first case study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory. J. Hydrometeor., 6, 3452, doi:10.1175/JHM-400.1.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., , Ceccato P. , , Grover-Kopec E. , , Lemma M. , , Connor S. J. , , and Ropelewski C. F. , 2007: Validation of satellite rainfall products over East Africa's complex topography. Int. J. Remote Sens., 28, 15031526, doi:10.1080/01431160600954688.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., , Janowiak J. E. , , and Kidd C. , 2007: Comparison of near-real-time precipitation estimations from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, doi:10.1175/BAMS-88-1-47.

    • Search Google Scholar
    • Export Citation
  • Frei, C., , and Schar C. , 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18, 873900, doi:10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9.

    • Search Google Scholar
    • Export Citation
  • Heidke, P., 1926: Berechnung des erfolges und der gute der windstarkevorhersagen im sturmwarnungsdienst. Georg. Ann., 8, 310349.

  • Huffman, G. J., , Adler R. F. , , Rudolf B. , , Schneider U. , , and Keehn P. R. , 1995: Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and N WP model precipitation information. J. Climate, 8, 12841295, doi:10.1175/1520-0442(1995)008<1284:GPEBOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., , Janowiak J. E. , , Arkin P. A. , , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., , Bauer P. , , Turk J. , , Huffman G. J. , , Joyce R. , , Hsu K.-L. , , and Braithwaite D. , 2012: Intercomparison of high-resolution precipitation products over northwest Europe. J. Hydrometeor., 13, 6783, doi:10.1175/JHM-D-11-042.1.

    • Search Google Scholar
    • Export Citation
  • Laviola, S., , Moscatello A. , , Miglietta M. M. , , Cattani E. , , and Levizzani V. , 2011: Satellite and numerical model investigation of two heavy rain events over the central Mediterranean. J. Hydrometeor., 12, 634649, doi:10.1175/2011JHM1257.1.

    • Search Google Scholar
    • Export Citation
  • Lionello, P., and Coauthors, 2006: The Mediterranean climate: an overview of the main characteristics and issues. Mediterranean, P. Lionello, P. Malanotte-Rizzoli, and R. Boscolo, Eds., Developments in Earth and Environmental Sciences, Vol. 4, Elsevier, 1–26, doi:10.1016/S1571-9197(06)80003-0.

  • Maddox, R. A., , Zhang J. , , Gourley J. J. , , and Howard K. W. , 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17, 927934, doi:10.1175/1520-0434(2002)017<0927:WRCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Malguzzi, P., , Grossi G. , , Buzzi A. , , Ranzi R. , , and Buizza R. , 2006: The 1966 “century” flood in Italy: A meteorological and hydrological revisitation. J. Geophys. Res., 111, D24106, doi:10.1029/2006JD007111.

    • Search Google Scholar
    • Export Citation
  • Mehta, A. V., , and Yang S. , 2008: Precipitation climatology over Mediterranean basin from ten years of TRMM measurements. Adv. Geosci., 17, 8791, doi:10.5194/adgeo-17-87-2008.

    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, E. I., , and Anagnostou E. N. , 2010: Understanding the scale relationships of uncertainty propagation of satellite rainfall through a distributed hydrologic model. J. Hydrometeor., 11, 520532, doi:10.1175/2009JHM1169.1.

    • Search Google Scholar
    • Export Citation
  • Nikolopoulos, E. I., , Anagnostou E. N. , , and Borga M. , 2012: Using high-resolution satellite rainfall products to simulate a major flash flood event in northern Italy. J. Hydrometeor., 14, 171–185, doi:10.1175/JHM-D-12-09.1.

    • Search Google Scholar
    • Export Citation
  • Nuissier, O., , Ducrocq V. , , Ricard D. , , Lebeaupin C. , , and Anquetin S. , 2008: A numerical study of three catastrophic precipitating events over southern France. I: Numerical framework and synoptic ingredients. Quart. J. Roy. Meteor. Soc., 134, 111130, doi:10.1002/qj.200.

    • Search Google Scholar
    • Export Citation
  • Papadopoulos, A., , Serpetzoglou E. , , and Anagnostou E. , 2008: Improving NWP through radar-rainfall-driven land surface parameters: A case study on convective precipitation forecasting. Adv. Water Resour., 31, 14561469, doi:10.1016/j.advwatres.2008.02.001.

    • Search Google Scholar
    • Export Citation
  • Petrucci, O., , and Polemio M. , 2009: The role of meteorological and climatic conditions in the occurrence of damaging hydro-geologic events in southern Italy. Nat. Hazards Earth Syst. Sci., 9, 105118, doi:10.5194/nhess-9-105-2009.

    • Search Google Scholar
    • Export Citation
  • Prat, O. P., , and Barros A. P. , 2010: Assessing satellite-based precipitation estimates in the southern Appalachian Mountains using rain gauges and TRMM PR. Adv. Geosci., 25, 143153, doi:10.5194/adgeo-25-143-2010.

    • Search Google Scholar
    • Export Citation
  • Ruin, I., , Creutin J.-D. , , Anquetin S. , , and Lutoff C. , 2008: Human exposure to flash floods—Relation between flood parameters and human vulnerability during a storm of September 2002 in southern France. J. Hydrol., 361, 199213, doi:10.1016/j.jhydrol.2008.07.044.

    • Search Google Scholar
    • Export Citation
  • Sangati, M., , Borga M. , , Rabuffetti D. , , and Bechini R. , 2009: Influence of rainfall and soil properties spatial aggregation on extreme flash flood response modelling: An evaluation based on the Sesia River basin, north western Italy. Adv. Water Resour., 32, 10901106, doi:10.1016/j.advwatres.2008.12.007.

    • Search Google Scholar
    • Export Citation
  • Schelfaut, K., , Pannemans B. , , van der Craats I. , , Krywkow J. , , Mysiak J. , , and Cools J. , 2011: Bringing flood resilience into practice: The FREEMAN project. Environ. Sci. Policy, 14, 825833, doi:10.1016/j.envsci.2011.02.009.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280, doi:10.1175/2009WAF2222267.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Stampoulis, D., , and Anagnostou E. N. , 2012: Evaluation of global satellite rainfall products over continental Europe. J. Hydrometeor, 13, 588603.

    • Search Google Scholar
    • Export Citation
  • Tang, L., , and Hossain F. , 2012: Investigating the similarity of satellite rainfall error metrics as a function of Köppen climate classification. Atmos. Res., 104–105, 182192, doi:10.1016/j.atmosres.2011.10.006.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., , Field P. R. , , Rasmussen R. M. , , and Hall W. D. , 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115.

    • Search Google Scholar
    • Export Citation
  • Zupanski, D., , Zhang S. Q. , , Zupanski M. , , Hou A. Y. , , and Cheung S. H. , 2011: A prototype WRF-based ensemble data assimilation system for dynamically downscaling satellite precipitation observations. J. Hydrometeor., 12, 118134, doi:10.1175/2010JHM1271.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 50 50 9
Full Text Views 4 4 0
PDF Downloads 5 5 0

Using NWP Simulations in Satellite Rainfall Estimation of Heavy Precipitation Events over Mountainous Areas

View More View Less
  • 1 Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut
  • | 2 School of Physics, University of Athens, Athens, Greece
© Get Permissions
Restricted access

Abstract

In this study, the authors investigate the use of high-resolution simulations from the Weather Research and Forecasting Model (WRF) for evaluating satellite rainfall biases of flood-inducing storms in mountainous areas. A probability matching approach is applied to evaluate a power-law relationship between satellite-retrieved and WRF-simulated rain rates over the storm domain. Satellite rainfall in this study is from the NOAA Climate Prediction Center morphing technique (CMORPH). Results are presented based on analyses of five heavy precipitation events that induced flash floods in northern Italy and southern France complex terrain basins. The WRF-based adjusted CMORPH rain rates exhibited improved error statistics against independent radar rainfall estimates. The authors show that the adjustment procedure reduces the underestimation of high rain rates, thus moderating the magnitude dependence of CMORPH rainfall bias. The Heidke skill score for the WRF-based adjusted CMORPH was consistently higher for a range of rain rate thresholds. This is an indication that the adjustment procedure ameliorates the satellite rain rates to provide a better estimation. Results also indicate that the low rain detection of CMORPH technique is also identifiable in the WRF–CMORPH comparison; however, the adjustment procedure herein does not incorporate this effect on the satellite rainfall bias adjustment.

Corresponding author address: Emmanouil Anagnostou, Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269. E-mail: manos@engr.uconn.edu

Abstract

In this study, the authors investigate the use of high-resolution simulations from the Weather Research and Forecasting Model (WRF) for evaluating satellite rainfall biases of flood-inducing storms in mountainous areas. A probability matching approach is applied to evaluate a power-law relationship between satellite-retrieved and WRF-simulated rain rates over the storm domain. Satellite rainfall in this study is from the NOAA Climate Prediction Center morphing technique (CMORPH). Results are presented based on analyses of five heavy precipitation events that induced flash floods in northern Italy and southern France complex terrain basins. The WRF-based adjusted CMORPH rain rates exhibited improved error statistics against independent radar rainfall estimates. The authors show that the adjustment procedure reduces the underestimation of high rain rates, thus moderating the magnitude dependence of CMORPH rainfall bias. The Heidke skill score for the WRF-based adjusted CMORPH was consistently higher for a range of rain rate thresholds. This is an indication that the adjustment procedure ameliorates the satellite rain rates to provide a better estimation. Results also indicate that the low rain detection of CMORPH technique is also identifiable in the WRF–CMORPH comparison; however, the adjustment procedure herein does not incorporate this effect on the satellite rainfall bias adjustment.

Corresponding author address: Emmanouil Anagnostou, Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269. E-mail: manos@engr.uconn.edu
Save