A Variational Approach to Retrieve Rain Rate by Combining Information from Rain Gauges, Radars, and Microwave Links

Blandine Bianchi Environmental Remote Sensing Laboratory, Civil and Environmental Engineering, School of Architecture, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Search for other papers by Blandine Bianchi in
Current site
Google Scholar
PubMed
Close
,
Peter Jan van Leeuwen Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Peter Jan van Leeuwen in
Current site
Google Scholar
PubMed
Close
,
Robin J. Hogan Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Robin J. Hogan in
Current site
Google Scholar
PubMed
Close
, and
Alexis Berne Environmental Remote Sensing Laboratory, Civil and Environmental Engineering, School of Architecture, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Search for other papers by Alexis Berne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate and reliable rain rate estimates are important for various hydrometeorological applications. Consequently, rain sensors of different types have been deployed in many regions. In this work, measurements from different instruments, namely, rain gauge, weather radar, and microwave link, are combined for the first time to estimate with greater accuracy the spatial distribution and intensity of rainfall. The objective is to retrieve the rain rate that is consistent with all these measurements while incorporating the uncertainty associated with the different sources of information. Assuming the problem is not strongly nonlinear, a variational approach is implemented and the Gauss–Newton method is used to minimize the cost function containing proper error estimates from all sensors. Furthermore, the method can be flexibly adapted to additional data sources. The proposed approach is tested using data from 14 rain gauges and 14 operational microwave links located in the Zürich area (Switzerland) to correct the prior rain rate provided by the operational radar rain product from the Swiss meteorological service (MeteoSwiss). A cross-validation approach demonstrates the improvement of rain rate estimates when assimilating rain gauge and microwave link information.

Corresponding author address: Alexis Berne, Environmental Remote Sensing Laboratory, Civil and Environmental Engineering, School of Architecture, Ecole Polytechnique Fédérale de Lausanne, GR C2 564, Station 2, CH-1015 Lausanne, Switzerland. E-mail: alexis.berne@epfl.ch

Abstract

Accurate and reliable rain rate estimates are important for various hydrometeorological applications. Consequently, rain sensors of different types have been deployed in many regions. In this work, measurements from different instruments, namely, rain gauge, weather radar, and microwave link, are combined for the first time to estimate with greater accuracy the spatial distribution and intensity of rainfall. The objective is to retrieve the rain rate that is consistent with all these measurements while incorporating the uncertainty associated with the different sources of information. Assuming the problem is not strongly nonlinear, a variational approach is implemented and the Gauss–Newton method is used to minimize the cost function containing proper error estimates from all sensors. Furthermore, the method can be flexibly adapted to additional data sources. The proposed approach is tested using data from 14 rain gauges and 14 operational microwave links located in the Zürich area (Switzerland) to correct the prior rain rate provided by the operational radar rain product from the Swiss meteorological service (MeteoSwiss). A cross-validation approach demonstrates the improvement of rain rate estimates when assimilating rain gauge and microwave link information.

Corresponding author address: Alexis Berne, Environmental Remote Sensing Laboratory, Civil and Environmental Engineering, School of Architecture, Ecole Polytechnique Fédérale de Lausanne, GR C2 564, Station 2, CH-1015 Lausanne, Switzerland. E-mail: alexis.berne@epfl.ch
Save
  • Andsager, K., Beard K. V. , and Laird N. F. , 1999: Laboratory measurements of axis ratios for large rain drops. J. Atmos. Sci., 56, 26732683.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., and Ulbrich C. W. , 1977: Path and area integrated rainfall measurement by microwave attenuation in the 1–3 cm band. J. Appl. Meteor., 16, 327332.

    • Search Google Scholar
    • Export Citation
  • Barber, P., and Yeh C. , 1975: Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies. Appl. Opt., 14, 28642872.

  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Beard, K. V., 1977: Terminal velocity adjustment for cloud and precipitation drops aloft. J. Atmos. Sci., 34, 12931298.

  • Berenguer, M., and Zawadzki I. , 2008: A study of the error covariance matrix of radar rainfall estimates in stratiform rain. Wea. Forecasting, 23, 10851101.

    • Search Google Scholar
    • Export Citation
  • Berne, A., and Uijlenhoet R. , 2007: Path-averaged rainfall estimation using microwave links: Uncertainty due to spatial rainfall variability. Geophys. Res. Lett., 34, L07403, doi:10.1029/2007GL029409.

    • Search Google Scholar
    • Export Citation
  • Bianchi, B., van Leeuwen P.-J. , Hogan R. J. , and Berne A. , 2013: Quality control of rain gauge measurements using telecommunication microwave links. J. Hydrol., 492, 15–23, doi:10.1016/j.jhydrol.2013.03.042.

    • Search Google Scholar
    • Export Citation
  • Brandes, E., Zhang G. , and Vivekanandan J. , 2004: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43, 461475.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar. Cambridge University Press, 662 pp.

  • Caumont, O., Ducrocq V. , Wattrelot É. , Jaubert G. , and Pradier-Vabre S. , 2010: 1D+3DVar assimilation of radar reflectivity data: A proof of concept. Tellus, 62A, 173187.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926.

    • Search Google Scholar
    • Export Citation
  • D'Amico, M., Pinotti M. , and Capsoni C. , 2003: The MANTISSA project: First results from the Italian field experiments. IGARSS '03: Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Vol. 7, IEEE, 43144316, doi:10.1109/IGARSS.2003.1295500.

  • Fletcher, S. J., and Zupanski M. , 2006: A data assimilation method for log-normally distributed observational errors. Quart. J. Roy. Meteor. Soc.,132, 2505–2519, doi:10.1256/qj.05.222.

  • Germann, U., Galli G. , Boscacci M. , and Bolliger M. , 2006: Radar precipitation measurement in a mountainous region. Quart. J. Roy. Meteor. Soc., 132, 16691692, doi:10.1256/qj.05.190.

    • Search Google Scholar
    • Export Citation
  • Goldshtein, O., Messer H. , and Zinevich A. , 2009: Rain rate estimation using measurements from commercial telecommunication links. IEEE Trans. Signal Process., 57, 16161625.

    • Search Google Scholar
    • Export Citation
  • Goudenhoofdt, E., and Delobbe L. , 2008: Evaluation of radar-gauge merging methods for quantitative precipitation estimates. Hydrol. Earth Syst. Sci., 13, 195203.

    • Search Google Scholar
    • Export Citation
  • Grum, M., Krämer S. , Verworn H. R. , and Redder A. , 2005: Combined use of point rain gauges, radar, microwave link and level measurements in urban hydrological modelling. Atmos. Res., 77, 313321.

    • Search Google Scholar
    • Export Citation
  • Hogan, R., 2007: A variational scheme for retrieving rainfall rate and hail reflectivity fraction from polarization radar. J. Appl. Meteor. Climatol., 46, 15541564.

    • Search Google Scholar
    • Export Citation
  • Jaffrain, J., Studzinski A. , and Berne A. , 2011: A network of disdrometers to quantify the small-scale variability of the raindrop size distribution. Water Resour. Res., 47, W00H06, doi:10.1029/2010WR009872.

    • Search Google Scholar
    • Export Citation
  • Krämer, S., Verwon H.-R. , and Redder A. , 2005: Improvement of X-band radar rainfall estimates using a microwave link. Atmos. Res., 77, 278299.

    • Search Google Scholar
    • Export Citation
  • Leijnse, H., Uijlenhoet R. , and Stricker J. N. M. , 2007: Rainfall measurement using radio links from cellular communication networks. Water Resour. Res.,43, W03201, doi:10.1029/2006WR005631.

  • McLaughlin, D., 2002: An integrated approach to hydrologic data assimilation: Interpolation, smoothing, and filtering. Adv. Water Resour., 25, 12751286, doi:10.1016/S0309-1708(02)00055-6.

    • Search Google Scholar
    • Export Citation
  • Meischner, P. F., Bringi V. N. , Heimann D. , and Holler H. , 1991: A squall line in southern Germany: Kinematics and precipitation formation as deduced by advanced polarimetric and Doppler radar measurements. Mon. Wea. Rev., 119, 678701.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., and Wentz F. J. , 2004: The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote Sens., 42, 18361849.

    • Search Google Scholar
    • Export Citation
  • Messer, H., Zinevich A. , and Alpert P. , 2006: Environmental monitoring by wireless communication networks. Science, 312, 713, doi:10.1126/science.1120034.

    • Search Google Scholar
    • Export Citation
  • Mishchenko, M. I., Travis L. D. , and Mackowski D. W. , 1996: T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transfer, 55, 535575.

    • Search Google Scholar
    • Export Citation
  • Nash, J. E., and Sutcliffe J. V. , 1970: River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol., 10, 282290.

    • Search Google Scholar
    • Export Citation
  • Nespor, V., and Sevruk B. , 1999: Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation. J. Atmos. Oceanic Technol., 16, 450464.

    • Search Google Scholar
    • Export Citation
  • Olsen, R. L., Rogers D. V. , and Hodge D. B. , 1978: The aRb relation in the calculation of rain attenuation. IEEE Trans. Antennas Propag., 26, 318329.

    • Search Google Scholar
    • Export Citation
  • Overeem, A., Leijnse H. , and Uijlehoet R. , 2011: Measuring urban rainfall using microwave links from commercial cellular communication networks. Water Resour. Res., 47, W12505, doi:10.1029/2010WR010350.

    • Search Google Scholar
    • Export Citation
  • Rahimi, A. R., Upton G. J. G. , Holt A. R. , and Cummings R. J. , 2003: Use of dual-frequency microwave links for measuring path-averaged rainfall. J. Geophys. Res., 108, 4467, doi:10.1029/2002JD003202.

    • Search Google Scholar
    • Export Citation
  • Rahimi, A. R., Upton G. J. G. , and Holt A. R. , 2004: Dual-frequency links—A complement to gauges and radar for the measurement of rain. J. Hydrol., 288, 312.

    • Search Google Scholar
    • Export Citation
  • Rogers, C. D., 2008: Inverse Methods for Atmospheric Sounding. 3rd ed. World Scientific, 240 pp.

  • Ryzhkov, A. V., Schuur T. J. , Burgess D. W. , Heinselman P. L. , Giangrande S. E. , and Zrnic D. S. , 2005: The joint polarization experiment, polarimetric rainfall measurements, and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824.

    • Search Google Scholar
    • Export Citation
  • Sauvageot, H., 1994: The probability density function of rain rate and the estimation of rainfall by area integrals. J. Appl. Meteor., 33, 12551262.

    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., and Berne A. , 2012: An extended Kalman filter framework for polarimetric X-band weather radar data processing. J. Atmos. Oceanic Technol., 29, 711730.

    • Search Google Scholar
    • Export Citation
  • Sieck, L. C., Burges S. J. , and Steiner M. , 2007: Challenges in obtaining reliable measurements of point rainfall. Water Resour. Res.,43, W01420, doi:10.1029/2005WR004519.

  • Thurai, M., and Bringi V. N. , 2005: Drop axis ratios from a 2D video disdrometer. J. Atmos. Oceanic Technol., 22, 966978.

  • Upton, G. J. G., and Rahimi A. , 2003: On-line detection of errors in tipping-bucket rain gauges. J. Hydrol., 278, 197212.

  • World Meteorological Organization, 2008: Guide to Meteorological Instruments and Methods of Observation. 7th ed. WMO Series, No. 8, World Meteorological Organization, 681 pp.

  • Zinevich, A., Alpert P. , and Messer H. , 2008: Estimation of rainfall fields using commercial microwave communication networks of variable density. Adv. Water Resour., 31, 14701480, doi:10.1016/j.advwatres.2008.03.003.

    • Search Google Scholar
    • Export Citation
  • Zinevich, A., Alpert P. , and Messer H. , 2009: Frontal rainfall observation by commercial microwave communication network. J. Appl. Meteor. Climatol., 48, 13171334.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 275 0 0
Full Text Views 346 259 12
PDF Downloads 164 85 8