Inferring Soil Moisture Memory from Streamflow Observations Using a Simple Water Balance Model

Rene Orth Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Rene Orth in
Current site
Google Scholar
PubMed
Close
,
Randal D. Koster Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Randal D. Koster in
Current site
Google Scholar
PubMed
Close
, and
Sonia I. Seneviratne Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Sonia I. Seneviratne in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Soil moisture is known for its integrative behavior and resulting memory characteristics. Soil moisture anomalies can persist for weeks or even months into the future, making initial soil moisture a potentially important contributor to skill in weather forecasting. A major difficulty when investigating soil moisture and its memory using observations is the sparse availability of long-term measurements and their limited spatial representativeness. In contrast, there is an abundance of long-term streamflow measurements for catchments of various sizes across the world. The authors investigate in this study whether such streamflow measurements can be used to infer and characterize soil moisture memory in respective catchments. Their approach uses a simple water balance model in which evapotranspiration and runoff ratios are expressed as simple functions of soil moisture; optimized functions for the model are determined using streamflow observations, and the optimized model in turn provides information on soil moisture memory on the catchment scale. The validity of the approach is demonstrated with data from three heavily monitored catchments. The approach is then applied to streamflow data in several small catchments across Switzerland to obtain a spatially distributed description of soil moisture memory and to show how memory varies, for example, with altitude and topography.

Corresponding author address: Rene Orth, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätstr. 16, CH-8092 Zurich, Switzerland. E-mail: rene.orth@env.ethz.ch

Abstract

Soil moisture is known for its integrative behavior and resulting memory characteristics. Soil moisture anomalies can persist for weeks or even months into the future, making initial soil moisture a potentially important contributor to skill in weather forecasting. A major difficulty when investigating soil moisture and its memory using observations is the sparse availability of long-term measurements and their limited spatial representativeness. In contrast, there is an abundance of long-term streamflow measurements for catchments of various sizes across the world. The authors investigate in this study whether such streamflow measurements can be used to infer and characterize soil moisture memory in respective catchments. Their approach uses a simple water balance model in which evapotranspiration and runoff ratios are expressed as simple functions of soil moisture; optimized functions for the model are determined using streamflow observations, and the optimized model in turn provides information on soil moisture memory on the catchment scale. The validity of the approach is demonstrated with data from three heavily monitored catchments. The approach is then applied to streamflow data in several small catchments across Switzerland to obtain a spatially distributed description of soil moisture memory and to show how memory varies, for example, with altitude and topography.

Corresponding author address: Rene Orth, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätstr. 16, CH-8092 Zurich, Switzerland. E-mail: rene.orth@env.ethz.ch
Save
  • Ammann, C., Marx O. , Wolff V. , and Neftel A. , 2010: Measuring the biosphere-atmosphere exchange of total reactive nitrogen by eddy covariance using a novel converter. Preprints, 29th Conf. on Agricultural and Forest Meteorology, Keystone, CO, Amer. Meteor. Soc., 8.1. [Available online at https://ams.confex.com/ams/pdfpapers/172693.pdf.]

  • Baldocchi, D. D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152435, doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2011: The international soil moisture network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 16751698, doi:10.5194/hess-15-1675-2011.

    • Search Google Scholar
    • Export Citation
  • Douville, H., 2010: Relative contribution of soil moisture and snow mass to seasonal climate predictability: A pilot study. Climate Dyn., 34, 797818, doi:10.1007/s00382-008-0508-1.

    • Search Google Scholar
    • Export Citation
  • Entin, J. K., Robock A. , Vinnikov K. Y. , Hollinger S. E. , Liu S. , and Namkhai A. , 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res., 105, 11 86511 877, doi:10.1029/2000JD900051.

    • Search Google Scholar
    • Export Citation
  • Foken, T., Wimmer F. , Mauder M. , Thomas C. , and Liebethal C. , 2006: Some aspects of the energy balance closure problem. Atmos. Chem. Phys., 6, 43954402, doi:10.5194/acp-6-4395-2006.

    • Search Google Scholar
    • Export Citation
  • Franssen, H. H., Stöckli R. , Lehner I. , Rotenberg E. , and Seneviratne S. I. , 2010: Energy balance closure of eddy covariance data: a multi-site analysis for European FLUXNET stations. Agric. For. Meteor., 150, 15531567, doi:10.1016/j.agrformet.2010.08.005.

    • Search Google Scholar
    • Export Citation
  • Hirschi, M., and Coauthors, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci., 4, 1721, doi:10.1038/ngeo1032.

    • Search Google Scholar
    • Export Citation
  • Kirchner, J., 2009: Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward. Water Resour. Res.,45, W02429, doi:10.1029/2008WR006912.

  • Koster, R. D., and Suarez M. J. , 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558570, doi:10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Mahanama S. P. P. , 2012: Land surface controls on hydroclimatic means and variability. J. Hydrometeor., 13, 16041620, doi:10.1175/JHM-D-12-050.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Mahanama S. P. P. , Livneh B. , Lettenmaier D. P. , and Reichle R. H. , 2010a: Skill in streamflow forecasts derived from large-scale estimates of soil moisture and snow. Nat. Geosci., 3, 613616, doi:10.1038/ngeo944.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010b: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Mahanama, S. P. P., Livneh B. , Koster R. D. , Lettenmaier D. , and Reichle R. , 2012: Soil moisture, snow, and seasonal streamflow forecasts in the United States. J. Hydrometeor., 13, 189203, doi:10.1175/JHM-D-11-046.1.

    • Search Google Scholar
    • Export Citation
  • Mittelbach, H., and Seneviratne S. I. , 2012: A new perspective on the spatio-temporal variability of soil moisture: Temporal dynamics versus time invariant contributions. Hydrol. Earth Syst. Sci., 16, 21692179, doi:10.5194/hess-16-2169-2012.

    • Search Google Scholar
    • Export Citation
  • Moore, I. D., Gessler P. E. , Nielsen G. A. , and Petersen G. A. , 1993: Terrain attributes: Estimation methods and scale effects. Modelling Change in Environmental Systems, A. J. Jakeman, M. B. Beck, and M. J. McAleer, Eds., Wiley, 189–214.

  • Mueller, B., and Seneviratne S. I. , 2012: Hot days induced by precipitation deficits at the global scale. Proc. Natl. Acad. Sci. USA, 109, 12 39812 403, doi:10.1073/pnas.1204330109.

    • Search Google Scholar
    • Export Citation
  • Orth, R., and Seneviratne S. I. , 2012a: Analysis of soil moisture memory from observations in Europe. J. Geophys. Res.,117, D15115, doi:10.1029/2011JD017366.

  • Orth, R., and Seneviratne S. I. , 2012b: Propagation of soil moisture memory to runoff and evapotranspiration. Hydrol. Earth Syst. Sci. Discuss., 9, 12 10312 143, doi:10.5194/hessd-9-12103-2012.

    • Search Google Scholar
    • Export Citation
  • Robock, A., Vinnikov K. Y. , Srinivasan G. , Entin J. K. , Hollinger S. E. , Speranskaya N. A. , Liu S. , and Namkhai A. , 2000: The global soil moisture data bank. Bull. Amer. Meteor. Soc., 81, 12811299, doi:10.1175/1520-0477(2000)081<1281:TGSMDB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Koster R. D. , 2012: A revised framework for analyzing soil moisture memory in climate data: Derivation and interpretation. J. Hydrometeor., 13, 404412, doi:10.1175/JHM-D-11-044.1.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2006: Soil moisture memory in AGCM simulations: Analysis of Global Land–Atmosphere Coupling Experiment (GLACE) data. J. Hydrometeor., 7, 10901112, doi:10.1175/JHM533.1.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., Corti T. , Davin E. L. , Hirschi M. , Jaeger E. B. , Lehner I. , Orlowsky B. , and Teuling A. J. , 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2012: Swiss prealpine Rietholzbach research catchment and lysimeter: 32 year time series and 2003 drought event. Water Resour. Res.,48, W06526, doi:10.1029/2011WR011749.

  • Teuling, A. J., Lehner I. , Kirchner J. W. , and Seneviratne S. I. , 2010a: Catchments as simple dynamical systems: Experience from a Swiss prealpine catchment. Water Resour. Res.,46, W10502, doi:10.1029/2009WR008777.

  • Teuling, A. J., and Coauthors, 2010b: Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci., 3, 722727, doi:10.1038/ngeo950.

    • Search Google Scholar
    • Export Citation
  • Tirone, G., 2003: Stima del bilanco del carbonio di due ecosistemi forestali Mediterranei. Confronto tra una lecceta e una pineta (in Italian). Ph.D. thesis, University of Tuscia, 98 pp.

  • Twine, T. E., and Coauthors, 2000: Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteor., 103, 279300, doi:10.1016/S0168-1923(00)00123-4.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Y., and Yeserkepova I. B. , 1991: Soil moisture: Empirical data and model results. J. Climate, 4, 6679, doi:10.1175/1520-0442(1991)004<0066:SMEDAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., and Betts A. K. , 1999: Impact of the ECMWF reanalysis soil water on forecasts of the July 1993 Mississippi flood. J. Geophys. Res., 104, 19 361–19 366, doi:10.1029/1999JD900449.

    • Search Google Scholar
    • Export Citation
  • Wilson, K., and Coauthors, 2002: Energy balance closure at FLUXNET sites. Agric. For. Meteor., 113, 223243, doi:10.1016/S0168-1923(02)00109-0.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 201 0 0
Full Text Views 337 236 9
PDF Downloads 189 101 5