Probabilistic Models of Maximum Precipitation for Designing Sewerage

Andrzej Kotowski Institute of Environmental Protection Engineering, Wrocław University of Technology, Wrocław, Poland

Search for other papers by Andrzej Kotowski in
Current site
Google Scholar
PubMed
Close
and
Bartosz Kaźmierczak Institute of Environmental Protection Engineering, Wrocław University of Technology, Wrocław, Poland

Search for other papers by Bartosz Kaźmierczak in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Pluviographic measurement results from the Institute of Meteorology and Water Management (IMGW) Wrocław–Strachowice meteorological station from the years 1960–2009 constitute the basis for this paper. While conducting the statistical analysis of precipitation occurrence frequency, the criterion of interval precipitation amounts was assumed in order to isolate the intensive rainfalls from the pluviograms, which made it possible to select a number of the most intensive rainfalls in each year. A total of 514 synthetic rainfall instances were isolated, which were then were arranged according to non-increasing amounts in 16 duration intervals. This was the basis to propose the unification of the development methodology of probabilistic models for maximum precipitation amounts, reliable in the designing and verification of drain flow capacity, especially for low probability of precipitation occurrence. Maximum precipitation models for Wrocław were developed (average annual precipitation H = 590 mm).

Corresponding author address: Bartosz Kaźmierczak, Institute of Environmental Protection Engineering, Wrocław University of Technology, pl. Grunwaldzki 9, 50-377 Wrocław, Poland. E-mail: bartosz.kazmierczak@pwr.wroc.pl

Abstract

Pluviographic measurement results from the Institute of Meteorology and Water Management (IMGW) Wrocław–Strachowice meteorological station from the years 1960–2009 constitute the basis for this paper. While conducting the statistical analysis of precipitation occurrence frequency, the criterion of interval precipitation amounts was assumed in order to isolate the intensive rainfalls from the pluviograms, which made it possible to select a number of the most intensive rainfalls in each year. A total of 514 synthetic rainfall instances were isolated, which were then were arranged according to non-increasing amounts in 16 duration intervals. This was the basis to propose the unification of the development methodology of probabilistic models for maximum precipitation amounts, reliable in the designing and verification of drain flow capacity, especially for low probability of precipitation occurrence. Maximum precipitation models for Wrocław were developed (average annual precipitation H = 590 mm).

Corresponding author address: Bartosz Kaźmierczak, Institute of Environmental Protection Engineering, Wrocław University of Technology, pl. Grunwaldzki 9, 50-377 Wrocław, Poland. E-mail: bartosz.kazmierczak@pwr.wroc.pl
Save
  • Alila, Y., 1999: A hierarchical approach for the regionalization of precipitation annual maxima in Canada. J. Geophys. Res., 104, 31 64531 655, doi:10.1029/1999JD900764.

    • Search Google Scholar
    • Export Citation
  • Ben-Zvi, A., 2009: Rainfall intensity–duration–frequency relationships derived from large partial duration series. J. Hydrol.,367, 104–114.

    • Search Google Scholar
    • Export Citation
  • Błaszczyk W., 1954: Stormwater runoff in the sewerage system. Gaz Woda Tech. Sanit.,9, 262–271.

  • BLFU, 2009: Bemessung von Misch- und Regenwasserkanälen. Teil 1: Klimawandel und möglicher Anpassungsbedarf. Bayerischen Landesamtes für Umwelt Rep. 66, 10 pp.

  • Bogdanowicz, E., and Stachý J. , 1998: Maximum Rainfall in Poland: Design Characteristics (in Polish). Vol. 23, Hydrologia i Oceanologia Series, Institute of Meteorology and Water Management, 83 pp.

  • Brath, A., Castellarin A. , and Montanari A. , 2003: Assessing the reliability of regional depth-duration-frequency equations for gaged and ungaged sites. Water Resour. Res., 39, 1367, doi:10.1029/2003WR002399.

    • Search Google Scholar
    • Export Citation
  • Bröker, H. W., 2006: Hydraulische bemessung und nachweis von entwässerungssystemen. DWA Rep. DWA-A118, 32 pp.

  • De Toffol, S., Laghari A. N. , and Rauch W. , 2009: Are extreme rainfall intensities more frequent? Analysis of trends in rainfall patterns relevant to urban drainage systems. Water Sci. Technol.,59, 1769–1776.

    • Search Google Scholar
    • Export Citation
  • Di Baldassarre, G., Di Castellarin A. , and Brath A. , 2006: Relationships between statistics of rainfall extremes and mean annual precipitation: An application for design-storm estimation in northern central Italy. Hydrol. Earth Syst. Sci., 10, 589601, doi:10.5194/hess-10-589-2006.

    • Search Google Scholar
    • Export Citation
  • EU, 2008: Drain and sewer systems outside buildings. European Union Standard PN-EN 752, 172 pp.

  • Konishi, S., and Kitagawa G. , 2008. Information Criteria and Statistical Modeling. Springer Science, 273 pp.

  • Kotowski, A., 2009: The verification of dimensioning rules for rainwater storage reservoirs in Poland (in Polish). Gaz Woda Tech. Sanit.,82, 14–21.

    • Search Google Scholar
    • Export Citation
  • Kotowski, A., and Kaźmierczak B. , 2009: The assessment of suitability of current formulae for rainfall intensity for designing drainage areas in Poland (in Polish). Gaz Woda Tech. Sanit.,83, 11–17.

    • Search Google Scholar
    • Export Citation
  • Kotowski, A., Kaźmierczak B. , and Dancewicz A. , 2010: The Modelling of Precipitations for the Dimensioning of Sewage Systems (in Polish). Vol. 68, Studies in Engineering, Civil Engineering Committee the Polish Academy of Sciences, 170 pp.

  • Kottegoda, N. T., Natale L. , and Raiteri E. , 2000: Statistical modelling of daily streamflows using rainfall input and curve number technique. J. Hydrol.,234, 170–186.

    • Search Google Scholar
    • Export Citation
  • Larsen, A. N., Gregorsen I. B. , Christensen O. B. , Linde J. J. , and Mikkelsen P. S. , 2009: Potential future increase in extreme one-hour precipitation events over Europe due to climate change. Water Sci. Technol., 60, 22052216, doi:10.2166/wst.2009.650.

    • Search Google Scholar
    • Export Citation
  • Leonard, M., Metcalfe A. , and Lambert M. , 2008: Frequency analysis of rainfall and streamflow extremes accounting for seasonal and climatic partitions. J. Hydrol.,348, 135–147.

    • Search Google Scholar
    • Export Citation
  • Licznar, P., Łomotowski J. , and Rupp D. E. , 2011a: Random cascade driven rainfall disaggregation for urban hydrology: An evaluation of six models and a new generator. Atmos. Res.,99, 563–578.

    • Search Google Scholar
    • Export Citation
  • Licznar, P., Schmitt T. G. , and Rupp D. E. , 2011b: Distributions of microcanonical cascade weights of rainfall at small timescales. Acta Geophys., 59, 1013–1043, doi:10.2478/s11600-011-0014-4.

    • Search Google Scholar
    • Export Citation
  • Mehrotra, R., and Sharma A. , 2007a: Preserving low-frequency variability in generated daily rainfall sequences. J. Hydrol.,345, 102–120.

    • Search Google Scholar
    • Export Citation
  • Mehrotra, R., and Sharma A. , 2007b: A semi-parametric model for stochastic generation of multi-site daily rainfall exhibiting low-frequency variability. J. Hydrol.,335, 180–193.

    • Search Google Scholar
    • Export Citation
  • Olsson, J., Berggren K. , Olofsson M. , and Viklander M. , 2009: Applying climate model precipitation scenarios for urban hydrological assessment: A case study in Kalmar City, Sweden. Atmos. Res., 92, 364375, doi:10.1016/j.atmosres.2009.01.015.

    • Search Google Scholar
    • Export Citation
  • Overeem, A., Buishand A. , and Holleman I. , 2008: Rainfall depth-duration-frequency curves and their uncertainties. J. Hydrol., 348, 124134, doi:10.1016/j.jhydrol.2007.09.044.

    • Search Google Scholar
    • Export Citation
  • Rupp, D. E., Licznar P. , Adamowski W. , and Leśniewski M. , 2012: Multiplicative cascade models for fine spatial downscaling of rainfall: parameterization with rain gauge data. Hydrol. Earth Syst. Sci., 16, 671684, doi:10.5194/hess-16-671-2012.

    • Search Google Scholar
    • Export Citation
  • Sakamoto, Y., Ishiguro M. , and Kitagawa G. , 1986: Akaike Information Criterion Statistics. KTK Scientific, 290 pp.

  • Schaarup-Jensen, K., Rasmussen M. R. , and Thorndahl S. , 2009: To what extent does variability of historical rainfall series influence extreme event statistics of sewer system surcharge and overflows? Water Sci. Technol.,60, 87–95.

    • Search Google Scholar
    • Export Citation
  • Schaefer, M. G., 1990: Regional analysis of precipitation annual maxima in Washington State. Water Resour. Res.,26, 191–131.

  • Schmitt, T. G., 2000: Kommentar zum arbeitsblatt ATV-A 118. Hydraulische Bemessung und Nachweis von Entwässerungssystemen Rep., 61 pp.

  • Siekmann, M., and Pinnekamp J. , 2011: Indicator based strategy to adapt urban drainage systems in regard to the consequences caused by climate change. Proc. 12th Int. Conf. on Urban Drainage, Porto Alegre, Brazil, CEDEX, PAP005359.

  • Staufer P., Leckenbusch G. , and Pinnenkampf J. , 2010: Entwässerungssysteme die ermittlung der relevanten Niederschlagscharakteristik für die siedlungsentwässerung im Klimawandel. Korresp. Abwasser,12, 1203–1208.

  • Willems, P., 2011: Revision of urban drainage design rules based on extrapolation of design rainfall statistics. Proc. 12th Int. Conf. on Urban Drainage, Porto Alegre, Brazil, CEDEX, PAP005394.

  • Willems, P., Arnbjerg-Nielsen K. , Olsson J. , and Nguyen T. D. , 2012: Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings. Atmos. Res., 103, 106118, doi:10.1016/j.atmosres.2011.04.003.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 205 0 0
Full Text Views 156 100 5
PDF Downloads 59 38 4