Validation of a Pattern Scaling Approach for Determining the Maximum Available Renewable Freshwater Resource

Yasuhiro Ishizaki National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Yasuhiro Ishizaki in
Current site
Google Scholar
PubMed
Close
,
Tokuta Yokohata National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Tokuta Yokohata in
Current site
Google Scholar
PubMed
Close
,
Seita Emori National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Seita Emori in
Current site
Google Scholar
PubMed
Close
,
Hideo Shiogama National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Hideo Shiogama in
Current site
Google Scholar
PubMed
Close
,
Kiyoshi Takahashi National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Kiyoshi Takahashi in
Current site
Google Scholar
PubMed
Close
,
Naota Hanasaki National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Naota Hanasaki in
Current site
Google Scholar
PubMed
Close
,
Toru Nozawa National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Toru Nozawa in
Current site
Google Scholar
PubMed
Close
,
Tomoo Ogura National Institute for Environmental Studies, Tsukuba, Japan

Search for other papers by Tomoo Ogura in
Current site
Google Scholar
PubMed
Close
,
Toshiyuki Nakaegawa Meteorological Research Institute, Tsukuba, Japan

Search for other papers by Toshiyuki Nakaegawa in
Current site
Google Scholar
PubMed
Close
,
Masakazu Yoshimori Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan

Search for other papers by Masakazu Yoshimori in
Current site
Google Scholar
PubMed
Close
,
Ai Yoshida Graduate School of Life and Environmental Sciences, Tsukuba University, Tsukuba, Japan

Search for other papers by Ai Yoshida in
Current site
Google Scholar
PubMed
Close
, and
Shigeru Watanabe Graduate School of Life and Environmental Sciences, Tsukuba University, Tsukuba, Japan

Search for other papers by Shigeru Watanabe in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A pattern scaling approach allows projection of regional climate changes under a wide range of emission scenarios. A basic assumption of this approach is that the spatial response pattern to global warming (scaling pattern) is the same for all emission scenarios. Precipitation minus evapotranspiration (PME) over land can be considered to be a measure of the maximum available renewable freshwater resource, and estimation of PME is fundamentally important for the assessment of water resources. The authors assessed the basic assumption of pattern scaling for PME by the use of five global climate models. A significant scenario dependency (SD) of the scaling pattern of PME was found over some regions. This SD of the scaling pattern of PME was mainly due to the SD and the nonlinear response of large-scale atmospheric and oceanic changes. When the SD of the scaling pattern of PME is significant in a target area, projections of the impact of climate change need to carefully take into consideration the SD. Although the SD of the anthropogenic aerosol scaling patterns tended to induce SDs of precipitation and evapotranspiration scaling patterns, the SDs of precipitation and evapotranspiration tended to cancel each other out. As a result, the SD of the PME scaling pattern tended to be insignificant over most regions where the SD of anthropogenic aerosol scaling patterns were significant. The authors could not find large impacts of land use change on PME scaling pattern, but the former may influence the latter on different time scales or spatial scales.

Corresponding author address: Yasuhiro Ishizaki, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan. E-mail: ishizaki.yasuhiro@nies.go.jp

Abstract

A pattern scaling approach allows projection of regional climate changes under a wide range of emission scenarios. A basic assumption of this approach is that the spatial response pattern to global warming (scaling pattern) is the same for all emission scenarios. Precipitation minus evapotranspiration (PME) over land can be considered to be a measure of the maximum available renewable freshwater resource, and estimation of PME is fundamentally important for the assessment of water resources. The authors assessed the basic assumption of pattern scaling for PME by the use of five global climate models. A significant scenario dependency (SD) of the scaling pattern of PME was found over some regions. This SD of the scaling pattern of PME was mainly due to the SD and the nonlinear response of large-scale atmospheric and oceanic changes. When the SD of the scaling pattern of PME is significant in a target area, projections of the impact of climate change need to carefully take into consideration the SD. Although the SD of the anthropogenic aerosol scaling patterns tended to induce SDs of precipitation and evapotranspiration scaling patterns, the SDs of precipitation and evapotranspiration tended to cancel each other out. As a result, the SD of the PME scaling pattern tended to be insignificant over most regions where the SD of anthropogenic aerosol scaling patterns were significant. The authors could not find large impacts of land use change on PME scaling pattern, but the former may influence the latter on different time scales or spatial scales.

Corresponding author address: Yasuhiro Ishizaki, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan. E-mail: ishizaki.yasuhiro@nies.go.jp
Save
  • Brovkin, V., and Coauthors, 2013: Effect of anthropogenic land-use and land-cover changes on climate and land carbon storage in CMIP5 projections for the twenty-first century. J. Climate,26, 6859–6881, doi:10.1175/JCLI-D-12-00623.1.

  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940.

    • Search Google Scholar
    • Export Citation
  • Frieler, K., Meinshausen M. , von Deimling T. S. , Andrews T. , and Forster P. , 2011: Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon. Geophys. Res. Lett., 38, L04702, doi:10.1029/2010GL045953.

    • Search Google Scholar
    • Export Citation
  • Frieler, K., Meinshausen M. , Golly A. , Mengel M. , van der Merwe K. , Donner S. , and Hoegh-Guldberg O. , 2012: Limiting global warming to 2°C is unlikely to save most coral reefs. Nat. Climate Change, 3, 165–170, doi:10.1038/nclimate1674.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Marinucci M. R. , 1996: An investigation of the sensitivity of simulated precipitation to model resolution and its implications for climate studies. Mon. Wea. Rev., 124, 148166, doi:10.1175/1520-0493(1996)124<0148:AIOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanasaki, N., Kanae S. , Oki T. , Masuda K. , Motoya K. , Shirakawa N. , Shen Y. , and Tanaka K. , 2008a: An integrated model for the assessment of global water resources—Part 1: Model description and input meteorological forcing. Hydrol. Earth Syst. Sci., 12, 10071025, doi:10.5194/hess-12-1007-2008.

    • Search Google Scholar
    • Export Citation
  • Hanasaki, N., Kanae S. , Oki T. , Masuda K. , Motoya K. , Shirakawa N. , Shen Y. , and Tanaka K. , 2008b: An integrated model for the assessment of global water resources—Part 2: Applications and assessments. Hydrol. Earth Syst. Sci., 12, 10271037, doi:10.5194/hess-12-1027-2008.

    • Search Google Scholar
    • Export Citation
  • Hijioka, Y., Matsuoka Y. , Nishimoto H. , Masui M. , and Kainuma M. , 2008: Global GHG emissions scenarios under GHG concentration stabilization targets. J. Global Environ. Eng., 13, 97108.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2012: LMDZ5B: The atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Climate Dyn., 40, 2193–2222, doi:10.1007/s00382-012-1343-y.

    • Search Google Scholar
    • Export Citation
  • Ishizaki, Y., Nakaegawa T. , and Takayabu I. , 2012a: Validation of precipitation over Japan during 1985–2004 simulated by three regional climate models and two multi-model ensemble means. Climate Dyn., 39, 185–206, doi:10.1007/s00382-012-1304-5.

    • Search Google Scholar
    • Export Citation
  • Ishizaki, Y., and Coauthors, 2012b: Temperature scaling pattern dependence on representative concentration pathway emission scenarios. Climatic Change, 112, 535–546, doi:10.1007/s10584-012-0430-8.

    • Search Google Scholar
    • Export Citation
  • Ishizaki, Y., Yoshimura K. , Kanae S. , Kimoto M. , Kurita N. , and Oki T. , 2012c: Interannual variability of H2 18O in precipitation over the Asian monsoon region. J. Geophys. Res., 117, D16308, doi:10.1029/2011JD015890.

    • Search Google Scholar
    • Export Citation
  • Ishizaki, Y., and Coauthors, 2013: Dependence of precipitation scaling patterns on emission scenarios for representative concentration pathways. J. Climate, 26, 8868–8879, doi:10.1175/JCLI-D-12-00540.1.

    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., Gregry J. M. , Webb M. J. , Sexton D. M. H. , and Johns T. C. , 2008: Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Climate Dyn., 30, 455465, doi:10.1007/s00382-007-0306-1.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Qian Y. , 2003: The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain. J. Hydrometeor., 4, 10251043, doi:10.1175/1525-7541(2003)004<1025:TSOPAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and Feichter J. , 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715737, doi:10.5194/acp-5-715-2005.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2012: Climate system response to external forcings and climate change projections in CCSM4. J. Climate, 25, 36613683, doi:10.1175/JCLI-D-11-00240.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, J. F. B., Johns T. C. , Eagles M. , Ingram W. J. , and Davis R. A. , 1999: Towards the construction of climate change scenarios. Climatic Change, 41, 547581, doi:10.1023/A:1005466909820.

    • Search Google Scholar
    • Export Citation
  • Nakaegawa, T., Sugi M. , and Matsumaru K. , 2003: A long-term numerical study of the potential predictability of seasonal mean fields of water resource variables using MRI/JMA-AGCM. J. Meteor. Soc. Japan, 81, 10411056, doi:10.2151/jmsj.81.1041.

    • Search Google Scholar
    • Export Citation
  • Nakaegawa, T., Kusunoki S. , Sugi M. , Kitoh A. , Kobayashi C. , and Takano K. , 2007: A study of dynamical seasonal prediction of potential water resources based on an atmospheric GCM experiment with prescribed sea-surface temperature. Hydrol. Sci. J., 52, 152165, doi:10.1623/hysj.52.1.152.

    • Search Google Scholar
    • Export Citation
  • Nohara, D., Kitoh A. , Hosaka M. , and Oki T. , 2006: Impact of climate change on river discharge projected by multimodel ensemble. J. Hydrometeor.,7, 1076–1089, doi:10.1175/JHM531.1.

  • Oki, T., and Kanae S. , 2006: Global hydrological cycles and world water resources. Science, 313, 10681072, doi:10.1126/science.1128845.

    • Search Google Scholar
    • Export Citation
  • Oki, T., Agata Y. , Kanae S. , Saruhashi T. , and Musiake K. , 2003: Global water resources assessment under climatic change in 2050 using TRIP. IAHS Publ.,280, 124–133.

  • Pokhrel, Y., Hanasaki N. , Koirala S. , Cho J. , Kim H. , Yeh P. J.-F. , Kanae S. , and Oki T. , 2012: Incorporating anthropogenic water regulation modules into a land surface model. J. Hydrometeor., 13, 255269, doi:10.1175/JHM-D-11-013.1.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and Carmichael G. , 2008: Global and regional climate changes due to black carbon. Nat. Geosci., 1, 221227, doi:10.1038/ngeo156.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., Crutzen P. J. , Kiehl J. T. , and Rosenfeld D. , 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 21192124, doi:10.1126/science.1064034.

    • Search Google Scholar
    • Export Citation
  • Riahi, K., Gruebler A. , and Nakicenovic N. , 2007: Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecasting Soc. Change, 74, 887935, doi:10.1016/j.techfore.2006.05.026.

    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., Jeffrey S. J. , Collier M. A. , Dravitzki S. M. , Hirst A. C. , Syktus J. I. , and Wong K. K. , 2012: Aerosol-induced changes in summer rainfall and circulation in the Australasian region: A study using single-forcing climate simulations. Atmos. Chem. Phys. Discuss., 12, 51075188, doi:10.5194/acpd-12-5107-2012.

    • Search Google Scholar
    • Export Citation
  • Rummukainen, M., 2010: State-of-the-art with regional climate models. Wiley Interdiscip. Rev.: Climate Change, 1, 8296, doi:10.1002/wcc.8.

    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and Coauthors, 2000: Geographical distributions of temperature change for scenarios of greenhouse gas and sulfur dioxide emissions. Technol. Forecasting Soc. Change, 65, 167193, doi:10.1016/S0040-1625(99)00114-6.

    • Search Google Scholar
    • Export Citation
  • Shiklomanov, I. A., 2000: Appraisal and assessment of world water resources. Water Int., 25, 1132, doi:10.1080/02508060008686794.

  • Shindell, D. T., Voulgarakis A. , Faluvegi G. , and Milly G. , 2012: Precipitation response to regional radiative forcing. Atmos. Chem. Phys., 12, 69696982, doi:10.5194/acp-12-6969-2012.

    • Search Google Scholar
    • Export Citation
  • Shiogama, H., and Coauthors, 2010a: Emission scenario dependencies in climate change assessments of the hydrological cycle. Climatic Change, 99, 321329, doi:10.1007/s10584-009-9765-1.

    • Search Google Scholar
    • Export Citation
  • Shiogama, H., Emori S. , Takahashi K. , Nagashima T. , Ogura T. , Nozawa T. , and Takemura T. , 2010b: Emission scenario dependence of precipitation on global warming in the MIROC3.2 model. J. Climate,23, 2404–2417, doi:10.1175/2009JCLI3428.1.

  • Swenson, S., and Wahr J. , 2006: Estimating large-scale precipitation minus evapotranspiration from GRACE satellite gravity measurements. J. Hydrometeor.,7, 252–270, doi:10.1175/JHM478.1.

  • Tebaldi, C., Arblaster J. M. , and Knutti R. , 2011: Mapping model agreement on future climate projections. Geophys. Res. Lett., 38, L23701, doi:10.1029/2011GL049863.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Smith L. , Qian T. , Dai A. , and Fasullo J. , 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758769, doi:10.1175/JHM600.1.

    • Search Google Scholar
    • Export Citation
  • van Vuuren, D., den Elzen M. , Lucas P. , Eickhout B. , Strengers B. , van Ruijven B. , Wonink S. , and van Houdt R. , 2007: Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs. Climatic Change, 81, 119–159, doi:10.1007/s10584-006-9172-9.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Soden B. J. , 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Vörösmarty, C. J., Green P. , Salisbury J. , and Lammers R. B. , 2000: Global water resources: Vulnerability from climate change and population growth. Science, 289, 284288, doi:10.1126/science.289.5477.284.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Search Google Scholar
    • Export Citation
  • Wise, M. A., and Coauthors, 2009: Implications of limiting CO2 concentrations for land use and energy. Science, 324, 11831186, doi:10.1126/science.1168475.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 260 100 2
PDF Downloads 82 21 0