An Examination of Meteorological and Soil Moisture Conditions in the Babocomari River Basin before the Flood Event of 2008

Robert J. Zamora NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Robert J. Zamora in
Current site
Google Scholar
PubMed
Close
,
Edward P. Clark NOAA/National Weather Service/Office of Climate, Water, and Weather Services, Silver Spring, Maryland

Search for other papers by Edward P. Clark in
Current site
Google Scholar
PubMed
Close
,
Eric Rogers NOAA/National Weather Service/National Centers for Environmental Prediction, College Park, Maryland

Search for other papers by Eric Rogers in
Current site
Google Scholar
PubMed
Close
,
Michael B. Ek NOAA/National Weather Service/National Centers for Environmental Prediction, College Park, Maryland

Search for other papers by Michael B. Ek in
Current site
Google Scholar
PubMed
Close
, and
Timothy M. Lahmers Department of Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Timothy M. Lahmers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The NOAA Hydrometeorology Testbed (HMT) program has deployed a soil moisture observing network in the Babocomari River basin located in southeastern Arizona. The Babocomari River is a major tributary of the San Pedro River. At 0000 UTC 23 July 2008, the second-highest flow during the period of record was measured just upstream of the location where the Babocomari River joins the main channel of the San Pedro River.

Upper-air and surface meteorological observations and Special Sensor Microwave Imager (SSM/I) satellite images of integrated water vapor were used to establish the synoptic and mesoscale conditions that existed before the flood occurred. The analysis indicates that a weak Gulf of California surge initiated by Hurricane Fausto transported a warm moist tropical air mass into the lower troposphere over southern Arizona, setting the stage for the intense, deep convection that initiated the flooding on the Babocomari River. Observations of soil moisture and precipitation at five locations in the basin and streamflow measured at two river gauging stations enabled the documentation of the hydrometeorological conditions that existed before the flooding occurred. The observations suggest that soil moisture conditions as a function of depth, the location of semi-impermeable layers of sedimentary rock known as caliche, and the spatial distribution of convective precipitation in the basin confined the flooding to the lower part of the basin. Finally, the HMT soil moisture observations are compared with soil moisture products from the NOAA/NWS/NCEP Noah land surface model.

Corresponding author address: Robert J. Zamora, NOAA/Earth System Research Laboratory/Physical Sciences Division, Water Cycle Branch, 325 Broadway, Boulder, CO 80303. E-mail: robert.j.zamora@noaa.gov

Abstract

The NOAA Hydrometeorology Testbed (HMT) program has deployed a soil moisture observing network in the Babocomari River basin located in southeastern Arizona. The Babocomari River is a major tributary of the San Pedro River. At 0000 UTC 23 July 2008, the second-highest flow during the period of record was measured just upstream of the location where the Babocomari River joins the main channel of the San Pedro River.

Upper-air and surface meteorological observations and Special Sensor Microwave Imager (SSM/I) satellite images of integrated water vapor were used to establish the synoptic and mesoscale conditions that existed before the flood occurred. The analysis indicates that a weak Gulf of California surge initiated by Hurricane Fausto transported a warm moist tropical air mass into the lower troposphere over southern Arizona, setting the stage for the intense, deep convection that initiated the flooding on the Babocomari River. Observations of soil moisture and precipitation at five locations in the basin and streamflow measured at two river gauging stations enabled the documentation of the hydrometeorological conditions that existed before the flooding occurred. The observations suggest that soil moisture conditions as a function of depth, the location of semi-impermeable layers of sedimentary rock known as caliche, and the spatial distribution of convective precipitation in the basin confined the flooding to the lower part of the basin. Finally, the HMT soil moisture observations are compared with soil moisture products from the NOAA/NWS/NCEP Noah land surface model.

Corresponding author address: Robert J. Zamora, NOAA/Earth System Research Laboratory/Physical Sciences Division, Water Cycle Branch, 325 Broadway, Boulder, CO 80303. E-mail: robert.j.zamora@noaa.gov
Save
  • Adams, D. K., and Comrie A. C. , 1997: The North American Monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and Warner T. T. , 1978: Development of hydrodynamic models suitable for air pollution and other mesometerological studies. Mon. Wea. Rev., 106, 10451078, doi:10.1175/1520-0493(1978)106<1045:DOHMSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., Hsie E.-Y. , and Kuo Y.-H. , 1987: A description of the fourth-generation Penn State/NCAR Mesoscale Model (MM4). NCAR Tech. Note NCAR/TN-292+STR, 66 pp.

  • Black, T. L., 1994: The new NMC mesoscale Eta Model: Description and forecast examples. Wea. Forecasting, 9, 265279, doi:10.1175/1520-0434(1994)009<0265:TNNMEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and Sanders F. , 1981: The Johnstown Flood of July 1977: A long-lived convective system. J. Atmos. Sci., 38, 16161642, doi:10.1175/1520-0469(1981)038<1616:TJFOJA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J. A., and Crawford K. C. , 2003: Examination of the surface energy budget: A comparison of eddy correlation and Bowen ratio surface measurement systems. J. Hydrometeor., 4, 160178, doi:10.1175/1525-7541(2003)4<160:EOTSEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, M. P., and Hay L. E. , 2004: Use of medium-range numerical weather prediction model output to produce forecasts of streamflow. J. Hydrometeor., 5, 1532, doi:10.1175/1525-7541(2004)005<0015:UOMNWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., Dickinson M. J. , and Bosart L. F. , 2009: The contribution of eastern North Pacific tropical cyclones to the rainfall climatology of the southwest United States. Mon. Wea. Rev., 137, 24152435, doi:10.1175/2009MWR2768.1.

    • Search Google Scholar
    • Export Citation
  • Cosgrove, B. A., and Coauthors, 2003: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J. Geophys. Res., 108, 8842, doi:10.1029/2002JD003118.

    • Search Google Scholar
    • Export Citation
  • Draxler, R. R., 1992: Hybrid Single-Particle Lagrangian Integrated Trajectories (HY-SPLIT): Version 3.0, users guide and model description. Tech. Rep. ERL ARL-195, NOAA Silver Spring, MD, 26 pp.

  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fuller, R. D., and Stensrud D. J. , 2000: The relationship between tropical easterly waves and surges over the Gulf of California during the North American Monsoon. Mon. Wea. Rev., 128, 29832989, doi:10.1175/1520-0493(2000)128<2983:TRBTEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Godfrey, C. M., and Stensrud D. J. , 2008: Soil temperature and moisture errors in operational Eta Model analyses. J. Hydrometeor., 9, 367387, doi:10.1175/2007JHM942.1.

    • Search Google Scholar
    • Export Citation
  • Godfrey, C. M., and Stensrud D. J. , 2010: An empirical latent heat flux parameterization for the Noah land surface model. J. Appl. Meteor. Climatol., 49, 16961713, doi:10.1175/2010JAMC2180.1.

    • Search Google Scholar
    • Export Citation
  • Hales, J. E., 1972: Surges of maritime tropical air northward over the Gulf of California. Mon. Wea. Rev., 100, 298306, doi:10.1175/1520-0493(1972)100<0298:SOMTAN>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hales, J. E., 1974: Southwestern United States summer monsoon source—Gulf of Mexico or Pacific Ocean? J. Appl. Meteor., 13, 331342, doi:10.1175/1520-0450(1974)013<0331:SUSSMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and Shi W. , 2005: Relationships between Gulf of California moisture surges and tropical cyclones in the eastern Pacific basin. J. Climate, 18, 46014620, doi:10.1175/JCLI3551.1.

    • Search Google Scholar
    • Export Citation
  • Hillel, D., 1998: Environmental Soil Physics. Academic Press, 771 pp.

  • Holton, J. R., 1971: A diagnostic model for equatorial wave disturbances: The role of vertical shear of the mean zonal wind. J. Atmos. Sci., 28, 5564, doi:10.1175/1520-0469(1971)028<0055:ADMFEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Illston, B. G., Basara J. B. , Fiebrich C. A. , Crawford K. C. , Hunt E. , Fisher D. K. , Elliott R. , and Humes K. , 2008: Mesoscale monitoring of soil moisture across a statewide network. J. Atmos. Oceanic Technol., 25, 167182, doi:10.1175/2007JTECHA993.1.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z. I., 2003: A nonhydrostatic model based on a new approach. Meteor. Atmos. Phys., 82, 271285, doi:10.1007/s00703-001-0587-6.

    • Search Google Scholar
    • Export Citation
  • Koren, V., Schaake J. , Mitchell K. , Duan Q.-Y. , Chen F. , and Baker J. M. , 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104 (D16), 569585.

    • Search Google Scholar
    • Export Citation
  • Koren, V., Reed S. , Smith M. , Zhang Z. , and Seo D.-J. , 2004: Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. J. Hydrol., 291, 297–318, doi:10.1016/j.jhydrol.2003.12.039.

    • Search Google Scholar
    • Export Citation
  • Liang, X., Lettenmaier D. P. , Wood E. F. , and Burges S. J. , 1994: A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res., 99 (D7), 14 415–14 428, doi:10.1029/94JD00483.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., Canova F. , and Hoxit L. R. , 1980: Meteorological characteristics of flash flood events over the western United States. Mon. Wea. Rev., 108, 18661877, doi:10.1175/1520-0493(1980)108<1866:MCOFFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, C. H., Crawford K. C. , Mitchell K. E. , and Stensrud D. J. , 2003: The impact of the land surface physics in the operational NCEP Eta Model on simulating the diurnal cycle: Evaluation and testing using the Oklahoma Mesonet data. Wea. Forecasting, 18, 748768, doi:10.1175/1520-0434(2003)018<0748:TIOTLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meng, L., and Quiring S. M. , 2008: A comparison of soil moisture models using Soil Climate Analysis Network Observations. J. Hydrometeor., 9, 641659, doi:10.1175/2008JHM916.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2005: Improving short-term (0–48 h) cool-season quantitative precipitation forecasting: Recommendations from a USWRP workshop. Bull. Amer. Meteor. Soc., 86, 16191632, doi:10.1175/BAMS-86-11-1619.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., Wick G. A. , Gutman S. I. , Dettinger M. D. , Cayan D. R. , and White A. B. , 2006: Flooding on California's Russian River: Role of atmospheric rivers. Geophys. Res. Lett.,33, L13801, doi:10.1029/2006GL026689.

  • Reed, S. M., and Maidment D. R. , 1999: Coordinate transformations for using NEXRAD data in GIS-based hydrologic modeling. J. Hydrol. Eng., 4, 174182, doi:10.1061/(ASCE)1084-0699(1999)4:2(174).

    • Search Google Scholar
    • Export Citation
  • Renard, K. G., Lane L. J. , Simanton J. R. , Emmerich W. E. , Stone J. J. , Weltz M. A. , Goodrich D. C. , and Yakowitz D. S. , 1993: Agricultural impacts in an arid environment: Walnut Gulch case study. J. Hydro. Sci. Tech., 9, 145190.

    • Search Google Scholar
    • Export Citation
  • Ritchie, J. T., and Otter S. , 1985: Description and performance of CERES-Wheat: A user-oriented wheat yield model. ARS Wheat Yield Project, USDA Rep. ARS-38, 159–175.

  • Schaefer, G. L., Cosh M. H. , and Jackson T. J. , 2007: The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN). J. Atmos. Oceanic Technol., 24, 20732077, doi:10.1175/2007JTECHA930.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., Gall R. L. , and Nordquist M. K. , 1997: Surges over the Gulf of California during the Mexican monsoon. Mon. Wea. Rev., 125, 417437, doi:10.1175/1520-0493(1997)125<0417:SOTGOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Geogr. Rev., 38, 5594, doi:10.2307/210739.

  • Thornthwaite, C. W., and Mather J. R. , 1955: The water balance. Publ. Climatol.,8 (1), 104 pp.

  • Veihmeyer, F. J., and Hendrickson A. H. , 1931: The moisture equivalent as a measure of the field capacity of soils. Soil Sci. Soc. Amer., 32, 181193, doi:10.1097/00010694-193109000-00003.

    • Search Google Scholar
    • Export Citation
  • Wood, E. F., Lettenmaier D. P. , and Zartarian V. G. , 1992: A land-surface hydrology parameterization with subgrid variability for general circulation models. J. Geophys. Res., 97 (D3), 27172728, doi:10.1029/91JD01786.

    • Search Google Scholar
    • Export Citation
  • Zamora, R. J., and Coauthors, 2003: Comparing MM5 radiative fluxes with observations gathered during the 1995 and 1999 Nashville southern oxidants studies. J. Geophys. Res., 108, 4050, doi:10.1029/2002JD002122.

    • Search Google Scholar
    • Export Citation
  • Zamora, R. J., Dutton E. G. , Trainer M. , McKeen S. A. , Wilczak J. M. , and Hou Y.-T. , 2005: The accuracy of solar irradiance calculations used in mesoscale numerical weather prediction. Mon. Wea. Rev., 133, 783792, doi:10.1175/MWR2886.1.

    • Search Google Scholar
    • Export Citation
  • Zamora, R. J., Ralph F. M. , Clark E. , and Schneider T. , 2011: The NOAA Hydrometeorology Testbed soil moisture observing networks: Design instrumentation, and preliminary results. J. Atmos. Oceanic Technol., 28, 11291140, doi:10.1175/2010JTECHA1465.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 231 65 2
PDF Downloads 117 49 2