Simulation of a Flash Flooding Storm at the Steep Edge of the Himalayas

Anil Kumar NASA Goddard Space Flight Center, Greenbelt, and Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Anil Kumar in
Current site
Google Scholar
PubMed
Close
,
Robert A. Houze Jr. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Robert A. Houze Jr. in
Current site
Google Scholar
PubMed
Close
,
Kristen L. Rasmussen Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Kristen L. Rasmussen in
Current site
Google Scholar
PubMed
Close
, and
Christa Peters-Lidard NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Christa Peters-Lidard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A flash flood and landslide in the Leh region of the Indus Valley in the Indian state of Jammu and Kashmir on 5–6 August 2010 resulted in hundreds of deaths and great property damage. Observations have led to the hypothesis that the storm, which formed over the Tibetan Plateau, was steered over the steep edge of the plateau by 500-hPa winds and then energized by the ingestion of lower-level moist air, which was approaching from the Arabian Sea and Bay of Bengal and rose up the Himalayan barrier. A coupled land surface and atmospheric model simulation validates this hypothesized storm scenario, with the model storm taking the form of a traveling mesoscale squall line with a leading convective line, trailing stratiform region, and midlevel inflow jet. In this region, the development of a mesoscale storm over high terrain is highly unusual, especially one in the form of a propagating squall line system. This unusual storm occurrence and behavior could serve as a warning sign in flash flood prediction. The coupled atmosphere and land surface model showed that the excessive runoff leading to the flood and landslide were favored by the occurrence of this unusual meteorological event coinciding temporally and spatially with favorable hydrologic conditions. Additionally, the model simulations showed that previous rainstorms had moistened the soil during the entire season and especially over the few days leading up to the Leh flood, so the normally arid mountainsides were likely not able to rapidly absorb the additional rainfall of the sudden 5 August squall line.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-12-0155.s1.

Corresponding author address: Dr. Anil Kumar, Hydrological Science Branch (Code 617), NASA Goddard Space Flight Center, Greenbelt, MD 20770. E-mail: anil.kumar@nasa.gov

Abstract

A flash flood and landslide in the Leh region of the Indus Valley in the Indian state of Jammu and Kashmir on 5–6 August 2010 resulted in hundreds of deaths and great property damage. Observations have led to the hypothesis that the storm, which formed over the Tibetan Plateau, was steered over the steep edge of the plateau by 500-hPa winds and then energized by the ingestion of lower-level moist air, which was approaching from the Arabian Sea and Bay of Bengal and rose up the Himalayan barrier. A coupled land surface and atmospheric model simulation validates this hypothesized storm scenario, with the model storm taking the form of a traveling mesoscale squall line with a leading convective line, trailing stratiform region, and midlevel inflow jet. In this region, the development of a mesoscale storm over high terrain is highly unusual, especially one in the form of a propagating squall line system. This unusual storm occurrence and behavior could serve as a warning sign in flash flood prediction. The coupled atmosphere and land surface model showed that the excessive runoff leading to the flood and landslide were favored by the occurrence of this unusual meteorological event coinciding temporally and spatially with favorable hydrologic conditions. Additionally, the model simulations showed that previous rainstorms had moistened the soil during the entire season and especially over the few days leading up to the Leh flood, so the normally arid mountainsides were likely not able to rapidly absorb the additional rainfall of the sudden 5 August squall line.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JHM-D-12-0155.s1.

Corresponding author address: Dr. Anil Kumar, Hydrological Science Branch (Code 617), NASA Goddard Space Flight Center, Greenbelt, MD 20770. E-mail: anil.kumar@nasa.gov

Supplementary Materials

    • Supplemental Materials (MOV 64.30 MB)
Save
  • Adler, R. F., Gu G. , and Huffman G. J. , 2012: Estimating climatological bias errors for the Global Precipitation Climatology Project (GPCP). J. Appl. Meteor. Climatol, 51, 8499, doi:10.1175/JAMC-D-11-052.1.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and Lang T. J. , 2003: Monitoring the monsoon in the Himalayas: Observations in central Nepal, June 2001. Mon. Wea. Rev., 131, 14081427, doi:10.1175/1520-0493(2003)131<1408:MTMITH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barros, A. P., Kim G. , Williams E. , and Nesbitt S. W. , 2004: Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Nat. Hazards Earth Syst. Sci., 4, 2951, doi:10.5194/nhess-4-29-2004.

    • Search Google Scholar
    • Export Citation
  • Caracena, F., Maddox R. A. , Hoxit L. R. , and Chappell C. F. , 1979: Mesoanalysis of the Big Thompson storm. Mon. Wea. Rev., 107, 117, doi:10.1175/1520-0493(1979)107<0001:MOTBTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carr, F. H., 1977: Mid-tropospheric cyclones of the summer monsoon. Pure Appl. Geophys., 115, 13831412, doi:10.1007/BF00874415.

  • Cetrone, J., and Houze R. A. Jr., 2009: Anvil clouds of tropical mesoscale convective systems in monsoon regions. Quart. J. Roy. Meteor. Soc., 135, 305317, doi:10.1002/qj.389.

    • Search Google Scholar
    • Export Citation
  • Cetrone, J., and Houze R. A. Jr., 2011: Leading and trailing anvil clouds of West African squall lines. J. Atmos. Sci., 68, 11141123, doi:10.1175/2011JAS3580.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Das, S., Ashrit R. , Moncrieff M. W. , Gupta M. D. , Dudhia J. , Liu C. , and Kalsi S. R. , 2007: Simulation of intense organized convective precipitation observed during the Arabian Sea Monsoon Experiment (ARMEX). J. Geophys. Res., 112, D20117, doi:10.1029/2006JD007627.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, Brooks H. E. , and Maddox R. A. , 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, Y. C., and Liu M. F. , 2013: Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci., 17, 837849, doi:10.5194/hess-17-837-2013.

    • Search Google Scholar
    • Export Citation
  • Goodall, S. K., 2004: Rural-to-urban migration and urbanization in Leh, Ladakh: A case study of three nomadic pastoral communities. Mt. Res. Dev., 24, 220227, doi:10.1659/0276-4741(2004)024[0220:RMAUIL]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., Keshavamurthy R. N. , and Satyan V. , 1980: Role of barotropic, baroclinic, and combined barotropic-baroclinic instability for the growth of monsoon depressions and mid-tropospheric cyclones. Proc. Indian Acad. Sci., Earth Planet. Sci., 89, 7997.

    • Search Google Scholar
    • Export Citation
  • Hirose, M., and Nakamura K. , 2002: Spatial and seasonal variation of rain profiles over Asia observed by spaceborne precipitation radar. J. Climate, 15, 34433458, doi:10.1175/1520-0442(2002)015<3443:SASVOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and Pan H.-L. , 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Houze, R. A., Jr., Wilton D. C. , and Smull B. F. , 2007: Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteor. Soc., 133, 13891411, doi:10.1002/qj.106.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., Rasmussen K. L. , Medina S. , Brodzik S. R. , and Romatschke U. , 2011: Anomalous atmospheric events leading to the summer 2010 floods in Pakistan. Bull. Amer. Meteor. Soc., 92, 291298, doi:10.1175/2010BAMS3173.1.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., Janowiak J. E. , Arkin P. A. , and Xie P. , 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46. Amer. Meteor. Soc., 165–170.

  • Kidd, C., and Levizzani V. , 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 11091116, doi:10.5194/hess-15-1109-2011.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and Houze R. A. Jr., 1999: Thermodynamic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool. Quart. J. Roy. Meteor. Soc., 125, 12091229, doi:10.1002/qj.1999.49712555606.

    • Search Google Scholar
    • Export Citation
  • Kirschbaum, D. B., Adler R. , Hong Y. , Kumar S. , Peters-Lidard C. , and Lerner-Lam A. , 2012: Advances in landslide hazard nowcasting: Evaluation of a global and regional modeling approach. Environ. Earth Sci.,66, 1683–1696, doi:10.1007/s12665-011-0990-3.

  • Krishnamurti, T. N., and Hawkins R. S. , 1970: Mid-tropospheric cyclones of the southwest monsoon. J. Appl. Meteor., 9, 442458, doi:10.1175/1520-0450(1970)009<0442:MTCOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kucera, P. A., Ebert E. E. , Turk F. J. , Levizzani V. , Kirschbaum D. , Tapiador F. J. , Loew A. , and Borsche M. , 2013: Precipitation from space: Advancing Earth system science. Bull. Amer. Meteor. Soc., 94, 365375, doi:10.1175/BAMS-D-11-00171.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Model. Software, 21, 14021415, doi:10.1016/j.envsoft.2005.07.004.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., Peters-Lidard C. , Eastman J. L. , and Tao W.-K. , 2008: An integrated high-resolution hydrometeorological modeling testbed using LIS and WRF. Environ. Model. Software, 23, 169181, doi:10.1016/j.envsoft.2007.05.012.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., Hoxit L. R. , Chappell C. F. , and Caracena F. , 1978: Comparison of meteorological aspects of the Big Thompson flood and Rapid City flash floods. Mon. Wea. Rev., 106, 375389, doi:10.1175/1520-0493(1978)106<0375:COMAOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mak, M.-K., 1975: The monsoonal mid-tropospheric cyclogenesis. J. Atmos. Sci., 32, 22462253, doi:10.1175/1520-0469(1975)032<2246:TMMTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Medina, S., Houze R. A. Jr., Kumar A. , and Niyogi D. , 2010: Summer monsoon convection in the Himalayan region: Terrain and land cover effects. Quart. J. Roy. Meteor. Soc., 136, 593616, doi:10.1002/qj.601.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and Yau M. K. , 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, doi:10.1175/JAS3535.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long wave. J. Geophys. Res., 102 (D14), 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Peters-Lidard, C., Mocko D. , Garcia M. , Santanello J. A. Jr., Tischler M. A. , Moran M. S. , and Wu Y. , 2008: Role of precipitation uncertainty in the estimation of hydrologic soil properties using remotely sensed soil moisture in a semiarid environment. Water Resour. Res., 44, W05S18, doi:10.1029/2007WR005884.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., Houze R. A. Jr., Kumar A. , and McFarlane S. A. , 2012: Comparison of simulated and observed continental tropical anvil clouds and their radiative heating profiles. J. Atmos. Sci., 69, 26622681, doi:10.1175/JAS-D-11-0251.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and Houze R. A. Jr., 2012: A flash flooding storm at the steep edge of high terrain: Disaster in the Himalayas. Bull. Amer. Meteor. Soc., 93, 17131724, doi:10.1175/BAMS-D-11-00236.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., Choi S. L. , Zuluaga M. D. , and Houze R. A. Jr., 2013: TRMM precipitation bias in extreme storms in South America. Geophys. Res. Lett.,40, 3457–3461, doi:10.1002/grl.50651.

  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and Houze R. A. Jr., 2011: Characteristics of precipitating convective systems in the South Asian monsoon. J. Hydrometeor., 12, 326, doi:10.1175/2010JHM1289.1.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., Medina S. , and Houze R. A. Jr., 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23, 419439, doi:10.1175/2009JCLI3140.1.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Peters-Lidard C. D. , and Kumar S. V. , 2011: Diagnosing the sensitivity of local land–atmosphere coupling via the soil moisture–boundary layer interaction. J. Hydrometeor., 12, 766786, doi:10.1175/JHM-D-10-05014.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Smull, B. F., and Houze R. A. Jr., 1987: Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 28692889, doi:10.1175/1520-0493(1987)115<2869:RIISLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, Z., Santanello J. A. , Chin M. , Zhou S. , Tan Q. , Kemp E. M. , and Peters-Lidard C. D. , 2013: Effect of land cover on atmospheric processes and air quality over the continental United States—A NASA unified WRF (NU-WRF) model study. Atmos. Chem. Phys. Discuss., 13, 54295475, doi:10.5194/acpd-13-5429-2013.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., 2011: Quality assurance in atmospheric modeling. Bull. Amer. Meteor. Soc., 92, 16011610, doi:10.1175/BAMS-D-11-00054.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., Houze R. A. Jr., and Heymsfield A. , 2011: Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat. J. Atmos. Sci., 68, 16531674, doi:10.1175/2011JAS3687.1.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., Santanello J. A. , Kumar S. V. , and Peters-Lidard C. D. , 2013: Representation of soil moisture feedbacks during drought in NASA Unified WRF (NU-WRF). J. Hydrometeor., 14, 360367, doi:10.1175/JHM-D-12-069.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 307 0 0
Full Text Views 387 130 9
PDF Downloads 279 111 8