A Nonparametric Multivariate Multi-Index Drought Monitoring Framework

Zengchao Hao University of California, Irvine, Irvine, California

Search for other papers by Zengchao Hao in
Current site
Google Scholar
PubMed
Close
and
Amir AghaKouchak University of California, Irvine, Irvine, California

Search for other papers by Amir AghaKouchak in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate and reliable drought monitoring is essential to drought mitigation efforts and reduction of social vulnerability. A variety of indices, such as the standardized precipitation index (SPI), are used for drought monitoring based on different indicator variables. Because of the complexity of drought phenomena in their causation and impact, drought monitoring based on a single variable may be insufficient for detecting drought conditions in a prompt and reliable manner. This study outlines a multivariate, multi-index drought monitoring framework, namely, the multivariate standardized drought index (MSDI), for describing droughts based on the states of precipitation and soil moisture. In this study, the MSDI is evaluated against U.S. Drought Monitor (USDM) data as well as the commonly used standardized indices for drought monitoring, including detecting drought onset, persistence, and spatial extent across the continental United States. The results indicate that MSDI includes attractive properties, such as higher probability of drought detection, compared to individual precipitation and soil moisture–based drought indices. This study shows that the MSDI leads to drought information generally consistent with the USDM and provides additional information and insights into drought monitoring.

Corresponding author address: Amir AghaKouchak, Department of Civil and Environmental Engineering, University of California, Irvine, E4130 Engineering Gateway, Irvine, CA 92697-2175. E-mail: amir.a@uci.edu

This article is included in the Advancing Drought Monitoring and Prediction Special Collection.

Abstract

Accurate and reliable drought monitoring is essential to drought mitigation efforts and reduction of social vulnerability. A variety of indices, such as the standardized precipitation index (SPI), are used for drought monitoring based on different indicator variables. Because of the complexity of drought phenomena in their causation and impact, drought monitoring based on a single variable may be insufficient for detecting drought conditions in a prompt and reliable manner. This study outlines a multivariate, multi-index drought monitoring framework, namely, the multivariate standardized drought index (MSDI), for describing droughts based on the states of precipitation and soil moisture. In this study, the MSDI is evaluated against U.S. Drought Monitor (USDM) data as well as the commonly used standardized indices for drought monitoring, including detecting drought onset, persistence, and spatial extent across the continental United States. The results indicate that MSDI includes attractive properties, such as higher probability of drought detection, compared to individual precipitation and soil moisture–based drought indices. This study shows that the MSDI leads to drought information generally consistent with the USDM and provides additional information and insights into drought monitoring.

Corresponding author address: Amir AghaKouchak, Department of Civil and Environmental Engineering, University of California, Irvine, E4130 Engineering Gateway, Irvine, CA 92697-2175. E-mail: amir.a@uci.edu

This article is included in the Advancing Drought Monitoring and Prediction Special Collection.

Save
  • AghaKouchak, A., Easterling D. , Hsu K. , Schubert S. , and Sorooshian S. , Eds., 2013: Extremes in a Changing Climate. Springer, 423 pp.

  • Anderson, M. C., Hain C. , Wardlow B. , Pimstein A. , Mecikalski J. R. , and Kustas W. P. , 2011: Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. J. Climate, 24, 20252044, doi:10.1175/2010JCLI3812.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., Hain C. , Otkin J. , Zhan X. , Mo K. , Svoboda M. , Wardlow B. , and Pimstein A. , 2013: An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with U.S. Drought Monitor classifications. J. Hydrometeor., 14, 1035–1056, doi:10.1175/JHM-D-12-0140.1.

    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., Clark E. A. , Wood A. W. , Hamlet A. F. , and Lettenmaier D. P. , 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6, 9851001, doi:10.1175/JHM450.1.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., and Haugen J. E. , 2007: On complex extremes: Flood hazards and combined high spring-time precipitation and temperature in Norway. Climatic Change, 85, 381406, doi:10.1007/s10584-007-9263-2.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., Seager R. , Cane M. A. , and Stahle D. W. , 2007: North American drought: Reconstructions, causes, and consequences. Earth-Sci. Rev., 81, 93134, doi:10.1016/j.earscirev.2006.12.002.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011: Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res., 116, D12115, doi:10.1029/2010JD015541.

    • Search Google Scholar
    • Export Citation
  • Dai, A., Trenberth K. E. , and Qian T. , 2004: A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5, 11171130, doi:10.1175/JHM-386.1.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Janowiak J. E. , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, doi:10.1175/BAMS-88-1-47.

    • Search Google Scholar
    • Export Citation
  • Edwards, E. C., and McKee T. B. , 1997: Characteristics of 20th century drought in the United States at multiple time scales. Climatology Rep. 97-2, Atmospheric Science Paper 634, Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 155 pp. [Available online at http://ccc.atmos.colostate.edu/edwards.pdf.]

  • Entekhabi, D., Rodriguez-Iturbe I. , and Castelli F. , 1996: Mutual interaction of soil moisture state and atmospheric processes. J. Hydrol., 184, 317, doi:10.1016/0022-1694(95)02965-6.

    • Search Google Scholar
    • Export Citation
  • FEMA, 1995: National mitigation strategy: Partnerships for building safer communities. Federal Emergency Management Agency, Washington, DC, 45 pp.

  • Gourley, J. J., Erlingis J. M. , Hong Y. , and Wells E. B. , 2012: Evaluation of tools used for monitoring and forecasting flash floods in the United States. Wea. Forecasting, 27, 158173, doi:10.1175/WAF-D-10-05043.1.

    • Search Google Scholar
    • Export Citation
  • Gringorten, I. I., 1963: A plotting rule for extreme probability paper. J. Geophys. Res., 68, 813814, doi:10.1029/JZ068i003p00813.

  • Guha-Sapir, D., Vos F. , Below R. , and Ponserre S. , 2011: Annual disaster statistical review 2010: The numbers and trends. Centre for Research on the Epidemiology of Disasters, Brussels, Belgium, 42 pp. [Available online at http://reliefweb.int/sites/reliefweb.int/files/resources/fullreport_37.pdf.]

  • Hao, Z., and AghaKouchak A. , 2013: Multivariate Standardized Drought Index: A multi-index parametric approach for drought analysis. Adv. Water Resour., 57, 1218, doi:10.1016/j.advwatres.2013.03.009.

    • Search Google Scholar
    • Export Citation
  • Hayes, M., Svoboda M. , Wall N. , and Widhalm M. , 2011: The Lincoln declaration on drought indices: Universal meteorological drought index recommended. Bull. Amer. Meteor. Soc., 92, 485488, doi:10.1175/2010BAMS3103.1.

    • Search Google Scholar
    • Export Citation
  • Heim, R. R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 11491166.

  • Lott, N., and Ross T. , 2006: Tracking and evaluating U.S. billion dollar weather disasters, 1980–2005. Preprints, AMS Forum: Environmental Risk and Impacts on Society: Successes and Challenges, Atlanta, GA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/pdfpapers/100686.pdf.]

  • McKee, T. B., Doesken N. J. , and Kleist J. , 1993: The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–184.

  • Mo, K. C., 2011: Drought onset and recovery over the United States. J. Geophys. Res.,116, D20106, doi:10.1029/2011JD016168.

  • Nelsen, R. B., 2006: An Introduction to Copulas. Springer, 269 pp.

  • Oglesby, R. J., and Erickson D. J. III, 1989: Soil moisture and the persistence of North American drought. J. Climate, 2, 13621380, doi:10.1175/1520-0442(1989)002<1362:SMATPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Palmer, W., 1965: Meteorological drought. Weather Bureau Research Paper 45. U.S. Weather Bureau, Washington, DC, 58 pp.

  • Quiring, S., Nielsen-Gammon J. , Srinivasan R. , Miller T. , and Narasimhan B. , 2007: Drought monitoring index for Texas. Tech. Rep. to Texas Water Development Board, Austin, TX, 262 pp. [Available online at http://www.twdb.state.tx.us/publications/reports/contracted_reports/doc/2005483028_drought_index.pdf.]

  • Reichle, R. H., 2012: The MERRA-Land Data Product. GMAO Office Note 3, 38 pp. [Available from http://gmao.gsfc.nasa.gov/pubs/docs/Reichle541.pdf.]

  • Reichle, R. H., Koster R. D. , De Lannoy G. J. M. , Forman B. A. , Liu Q. , Mahanama S. P. P. , and Touré A. , 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 63226338, doi:10.1175/JCLI-D-10-05033.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Kushnir Y. , Herweijer C. , Naik N. , and Velez J. , 2005: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 40654088, doi:10.1175/JCLI3522.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Wood E. F. , 2007: Characteristics of global and regional drought, 1950–2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle. J. Geophys. Res., 112, D17115, doi:10.1029/2006JD008288.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., Goteti G. , Wen F. , and Wood E. F. , 2004: A simulated soil moisture based drought analysis for the United States. J. Geophys. Res., 109, D24108, doi:10.1029/2004JD005182.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., and Wood A. W. , 2008: Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett., 35, L02405, doi:10.1029/2007GL032487.

    • Search Google Scholar
    • Export Citation
  • Shukla, S., Steinemann A. C. , and Lettenmaier D. P. , 2011: Drought monitoring for Washington State: Indicators and applications. J. Hydrometeor., 12, 6683, doi:10.1175/2010JHM1307.1.

    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190.

  • Wang, A., Bohn T. J. , Mahanama S. P. , Koster R. D. , and Lettenmaier D. P. , 2009: Multimodel ensemble reconstruction of drought over the continental United States. J. Climate, 22, 26942712, doi:10.1175/2008JCLI2586.1.

    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., 2005: Drought and Water Crises: Science, Technology, and Management Issues. Taylor and Francis, 406 pp.

  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press, 676 pp.

  • Yue, S., Ouarda T. B. M. J. , Bobée B. , Legendre P. , and Bruneau P. , 1999: The Gumbel mixed model for flood frequency analysis. J. Hydrol., 226, 88100, doi:10.1016/S0022-1694(99)00168-7; Corrigendum, 228, 283.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5301 1042 97
PDF Downloads 2891 789 65