Evaluation of Model Parameter Convergence when Using Data Assimilation for Soil Moisture Estimation

Gift Dumedah Department of Civil Engineering, Monash University, Clayton, Victoria, Australia

Search for other papers by Gift Dumedah in
Current site
Google Scholar
PubMed
Close
and
Jeffrey P. Walker Department of Civil Engineering, Monash University, Clayton, Victoria, Australia

Search for other papers by Jeffrey P. Walker in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Data assimilation (DA) methods are commonly used for finding a compromise between imperfect observations and uncertain model predictions. The estimation of model states and parameters has been widely recognized, but the convergence of estimated parameters has not been thoroughly investigated. The distribution of model state and parameter values is closely linked to convergence, which in turn impacts the ultimate estimation accuracy of DA methods. This demonstration study examines the robustness and convergence of model parameters for the ensemble Kalman filter (EnKF) and the evolutionary data assimilation (EDA) in the context of the Soil Moisture and Ocean Salinity (SMOS) soil moisture assimilation into the Joint UK Land Environment Simulator in the Yanco area in southeast Australia. The results show high soil moisture estimation accuracy for the EnKF and EDA methods when compared with the open loop estimates during evaluation and validation stages. The level of convergence was quantified for each model parameter in the EDA approach to illustrate its potential in the retrieval of variables that were not directly observed. The EDA was found to have a higher estimation accuracy than the EnKF when its updated members were evaluated against the SMOS level 2 soil moisture. However, the EnKF and EDA estimations are comparable when their forward soil moisture estimates were validated against SMOS soil moisture outside the assimilation time period. This suggests that parameter convergence does not significantly influence soil moisture estimation accuracy for the EnKF. However, the EDA has the advantage of simultaneously determining the convergence of model parameters while providing comparably higher accuracy for soil moisture estimates.

Corresponding author address: Jeffrey Walker, Building 60, Department of Civil Engineering, Monash University, Wellington Road, Clayton VIC 3800, Australia. E-mail: jeff.walker@monash.edu

This article is included in the The Catchment-scale Hydrological Modeling & Data Assimilation (CAHMD-V) special collection.

Abstract

Data assimilation (DA) methods are commonly used for finding a compromise between imperfect observations and uncertain model predictions. The estimation of model states and parameters has been widely recognized, but the convergence of estimated parameters has not been thoroughly investigated. The distribution of model state and parameter values is closely linked to convergence, which in turn impacts the ultimate estimation accuracy of DA methods. This demonstration study examines the robustness and convergence of model parameters for the ensemble Kalman filter (EnKF) and the evolutionary data assimilation (EDA) in the context of the Soil Moisture and Ocean Salinity (SMOS) soil moisture assimilation into the Joint UK Land Environment Simulator in the Yanco area in southeast Australia. The results show high soil moisture estimation accuracy for the EnKF and EDA methods when compared with the open loop estimates during evaluation and validation stages. The level of convergence was quantified for each model parameter in the EDA approach to illustrate its potential in the retrieval of variables that were not directly observed. The EDA was found to have a higher estimation accuracy than the EnKF when its updated members were evaluated against the SMOS level 2 soil moisture. However, the EnKF and EDA estimations are comparable when their forward soil moisture estimates were validated against SMOS soil moisture outside the assimilation time period. This suggests that parameter convergence does not significantly influence soil moisture estimation accuracy for the EnKF. However, the EDA has the advantage of simultaneously determining the convergence of model parameters while providing comparably higher accuracy for soil moisture estimates.

Corresponding author address: Jeffrey Walker, Building 60, Department of Civil Engineering, Monash University, Wellington Road, Clayton VIC 3800, Australia. E-mail: jeff.walker@monash.edu

This article is included in the The Catchment-scale Hydrological Modeling & Data Assimilation (CAHMD-V) special collection.

Save
  • Andreadis, K. M., Liang D. , Tsang L. , Lettenmaier D. P. , and Josberger E. G. , 2008: Characterization of errors in a coupled snow hydrology–microwave emission model. J. Hydrometeor., 9, 149164, doi:10.1175/2007JHM885.1.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), Model description—Part 1: Energy and water fluxes. Geosci. Model Dev. Discuss., 4, 595640, doi:10.5194/gmdd-4-595-2011.

    • Search Google Scholar
    • Export Citation
  • Bureau of Meteorology, 2010: Operational implementation of the access numerical weather prediction systems. NMOC Operations Bull. 83, 35 pp.

  • Burgers, T., Jan Van Leeuwen P. , and Evensen G. , 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724, doi:10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, M., Rupp D. , Woods R. , Zheng X. , Ibbitt R. , Slater A. , Schmidt J. , and Uddstrom M. , 2008: Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model. Adv. Water Resour., 31, 13091324, doi:10.1016/j.advwatres.2008.06.005.

    • Search Google Scholar
    • Export Citation
  • Confesor, R. B., and Whittaker G. W. , 2007: Automatic calibration of hydrologic models with multi-objective evolutionary algorithm and Pareto optimization. J. Amer. Water Resour. Assoc., 43, 981989, doi:10.1111/j.1752-1688.2007.00080.x.

    • Search Google Scholar
    • Export Citation
  • Dumedah, G., 2012: Formulation of the evolutionary-based data assimilation, and its practical implementation. Water Resour. Manage., 26, 38533870, doi:10.1007/s11269-012-0107-0.

    • Search Google Scholar
    • Export Citation
  • Dumedah, G., and Coulibaly P. , 2012: Evolutionary-based data assimilation: New prospects for hydrologic forecasting. Proc. 10th Int. Conf. on Hydroinformatics—HIC 2012, Hamburg, Germany, Hamburg University of Technology, HYA00318-00591.

  • Dumedah, G., and Coulibaly P. , 2013a: Evolutionary assimilation of streamflow in distributed hydrologic modeling using in-situ soil moisture data. Adv. Water Resour., 53, 231241, doi:10.1016/j.advwatres.2012.07.012.

    • Search Google Scholar
    • Export Citation
  • Dumedah, G., and Coulibaly P. , 2013b: Evaluating forecasting performance for data assimilation methods: The ensemble Kalman filter, the particle filter, and the evolutionary-based assimilation. Adv. Water Resour., 60, 4763, doi:10.1016/j.advwatres.2013.07.007.

    • Search Google Scholar
    • Export Citation
  • Dumedah, G., and Coulibaly P. , 2014a: Examining the differences in streamflow estimation for gauged and ungauged watersheds using the evolutionary data assimilation. J. Hydroinf.,in press.

  • Dumedah, G., and Coulibaly P. , 2014b: Integration of evolutionary algorithm into ensemble Kalman filter and particle filter for hydrologic data assimilation. J. Hydroinf.,in press.

  • Dumedah, G., Berg A. A. , and Wineberg M. , 2011: An integrated framework for a joint assimilation of brightness temperature and soil moisture using the Nondominated Sorting Genetic Algorithm-II. J. Hydrometeor., 12, 15961609, doi:10.1175/JHM-D-10-05029.1.

    • Search Google Scholar
    • Export Citation
  • Dumedah, G., Berg A. A. , and Wineberg M. , 2012: Evaluating autoselection methods used for choosing solutions from Pareto-optimal set: Does nondominance persist from calibration to validation phase? J. Hydrol. Eng., 17, 150159, doi:10.1061/(ASCE)HE.1943-5584.0000389.

    • Search Google Scholar
    • Export Citation
  • Dumedah, G., Walker J. P. , and Rüdiger C. , 2014: Can SMOS data be used directly on the 15-km discrete global grid? IEEE Trans. Geosci. Remote Sens., doi:10.1109/TGRS.2013.2262501, in press.

    • Search Google Scholar
    • Export Citation
  • Efstratiadis, A., and Koutsoyiannis D. , 2010: One decade of multi-objective calibration approaches in hydrological modelling: A review. Hydrol. Sci. J., 55, 5878, doi:10.1080/02626660903526292.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, doi:10.1007/s10236-003-0036-9.

    • Search Google Scholar
    • Export Citation
  • Gupta, H. V., Wagener T. , and Liu Y. , 2008: Reconciling theory with observations: Elements of a diagnostic approach to model evaluation. Hydrol. Processes, 22, 38023813, doi:10.1002/hyp.6989.

    • Search Google Scholar
    • Export Citation
  • He, M., Hogue T. S. , Margulis S. A. , and Franz K. J. , 2012: An integrated uncertainty and ensemble-based data assimilation approach for improved operational streamflow predictions. Hydrol. Earth Syst. Sci., 16, 815831, doi:10.5194/hess-16-815-2012.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and Mitchell H. L. , 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, D. A., Wang W. , and Fawcett R. , 2007: Climate data for the Australian Water Availability Project. Final Milestone Rep., Bureau of Meteorology, Melbourne, Australia, 37 pp. [Available online at http://143.188.17.20/data/warehouse/brsShop/data/awapfinalreport200710.pdf.]

  • Jones, D. A., Wang W. , and Fawcett R. , 2009: High-quality spatial climate data-sets for Australia. Aust. Meteor. Oceanogr. J., 58, 233248.

    • Search Google Scholar
    • Export Citation
  • Lymburner, L., and Coauthors, 2011: The national dynamic land cover dataset. Tech. Rep., Geoscience Australia Record 2011/31, 95 pp. [Available online at http://www.ga.gov.au/earth-observation/landcover.html.]

  • McKenzie, N. J., and Hook J. , 1992: Interpretations of the atlas of Australian soils. Consulting report to the Environmental Resources Information Network (ERIN), Tech. Rep. 94, CSIRO Division of Soils, Canberra, Australia, 20 pp.

  • McKenzie, N. J., Jacquier D. W. , Ashton L. J. , and Cresswell H. P. , 2000: Estimation of soil properties using the Atlas of Australian Soils. Tech. Rep. 11/00, CSIRO Land and Water, Canberra, Australia, 24 pp. [Available online from http://www.clw.csiro.au/publications/technical2000/tr11-00.pdf.]

  • Mironov, V. L., Dobson M. C. , Kaupp V. , Komarov S. A. , and Kleshchenko V. N. , 2004: Generalized refractive mixing dielectric model for moist soils. IEEE Trans. Geosci. Remote Sens., 42, 773785, doi:10.1109/TGRS.2003.823288.

    • Search Google Scholar
    • Export Citation
  • Moradkhani, H., and Hsu K. , 2005: Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter. Water Resour. Res., 41, W05012, doi:10.1029/2004WR003604.

    • Search Google Scholar
    • Export Citation
  • Moradkhani, H., Sorooshian S. , Gupta H. V. , and Paul Houser R. , 2005: Dual state–parameter estimation of hydrological models using ensemble Kalman filter. Adv. Water Resour., 28, 135147, doi:10.1016/j.advwatres.2004.09.002.

    • Search Google Scholar
    • Export Citation
  • Pipunic, R., McColl K. , Ryu D. , and Walker J. , 2011: Can assimilating remotely-sensed surface soil moisture data improve root-zone soil moisture predictions in the CABLE land surface model? MODSIM2011: 19th International Congress on Modelling and Simulation, F. Chan, D. Marinova, and R. Anderssen, Eds., Modelling and Simulation Society of Australia and New Zealand, 1994–2001.

  • Smith, A. B., and Coauthors, 2012: The Murrumbidgee soil moisture monitoring network data set. Water Resour. Res., 48, W07701, doi:10.1029/2012WR011976.

    • Search Google Scholar
    • Export Citation
  • Su, H., Yang Z.-L. , Niu G.-Y. , and Wilson C. R. , 2011: Parameter estimation in ensemble based snow data assimilation: A synthetic study. Adv. Water Resour., 34, 407416, doi:10.1016/j.advwatres.2010.12.002.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., Reed P. , and Wagener T. , 2006: How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration? Hydrol. Earth Syst. Sci., 10, 289307, doi:10.5194/hess-10-289-2006.

    • Search Google Scholar
    • Export Citation
  • Thorndike, R. L., 1953: Who belongs in the family? Psychometrika, 18, 267–276, doi:10.1007/BF02289263.

  • Vrugt, J. A., and Sadegh M. , 2013: Toward diagnostic model calibration and evaluation: Approximate Bayesian computation. Water Resour. Res., 49, 43354345, doi:10.1002/wrcr.20354.

    • Search Google Scholar
    • Export Citation
  • Vrugt, J. A., Diks C. G. H. , Gupta H. V. , Bouten W. , and Verstraten J. M. , 2005a: Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation. Water Resour. Res., 41, W01017, doi:10.1029/2004WR003059.

    • Search Google Scholar
    • Export Citation
  • Vrugt, J. A., Robinson B. A. , and Vesselinov V. V. , 2005b: Improved inverse modeling for flow and transport in subsurface media: Combined parameter and state estimation. Geophys. Res. Lett., 32, L18408, doi:10.1029/2005GL023940.

    • Search Google Scholar
    • Export Citation
  • Weerts, A. H., and El Serafy G. Y. , 2006: Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models. Water Resour. Res., 42, W09403, doi:10.1029/2005WR004093.

    • Search Google Scholar
    • Export Citation
  • Weerts, A. H., El Serafy G. Y. , Hummel S. , Dhondia J. , and Gerritsen H. , 2010: Application of generic data assimilation tools (DATools) for flood forecasting purposes. Comput. Geosci., 36, 453–463, doi:10.1016/j.cageo.2009.07.009.

    • Search Google Scholar
    • Export Citation
  • Xie, X., and Zhang D. , 2010: Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter. Adv. Water Resour., 33, 678690, doi:10.1016/j.advwatres.2010.03.012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 700 171 13
PDF Downloads 230 85 20